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adelic coset spaces. Also included is a thorough treatment of the construction of geometric cycles

in arithmetically deûned locally symmetric spaces and some associated cohomological questions.
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Preface

Arithmetic groups are generalisations, to the setting of algebraic groups deûned
over a global ûeld, of the subgroups of ûnite index in the general linear group
GLÿ (�) with entries in the ring of integers � of an algebraic number ûeld ý or,
more generally, an order � in a ûnite-dimensional division algebra over ý. Histori-
cally such groups arose naturally in the study of arithmetic properties of quadratic
forms. The study of reduction of such forms, as developed by Gauss, Hermite, and
Minkowski, among others, gave a powerful way to select, from the inûnitely many
forms, that are integrally equivalent to a given form, one that is intrinsically char-
acterised by suitable conditions on its entries. Minkowski, following a suggestion
made by Gauss in 1831, created a new version of reduction theory by working
with lattices as geometric objects. His works, especially his geometric point of
view, served as substantial stimuli for Siegel9s studies of quadratic, symplectic, or
Hermitian forms and their associated discontinuous groups. Since the development
of the general theory of linear algebraic groups over ûelds, it has been natural to
view arithmetic groups as a rich integral extension of that algebro-geometric the-
ory. Thus, thanks to the work of Chevalley, Borel, Serre, Harder, and Raghunathan,
the study of arithmetic groups today can start from the theory of algebraic groups
deûned over a ûeld ý, which is either an algebraic number ûeld or a ûnite separable
extension of ýÿ (ý), where ýÿ is a ûnite ûeld and ý is transcendental over ýÿ, i.e. ý
is a global ûeld.

An arithmetic group � acts on a homogeneous space which is deûned by the
ambient algebraic group. This action and the study of the orbit space are of interest,
both intrinsically and for the insight into the structure of�. Thus, there is an essential
geometric component to the investigations of these groups. Further, arithmetic
groups arise in a wide variety of mathematical contexts, ranging from diûerential
geometry, in particular, the theory of locally symmetric spaces, topology, geometric
group theory, to number theory and arithmetic algebraic geometry, the theory of
automorphic forms over global ûelds, and even lately quantum computing.
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x Preface

Therefore, on the one hand, 8Arithmetic Groups9 do not present themselves as a
coherent limited theory, so that a book dealing with this area faces a challenge. On
the other hand, there are some overarching results and constructions, in particular,
regarding reduction theory, which are fundamental to many of the areas discussed
above and which are likely to be used in diûerent contexts. Thus, as a resolution,
inspired by the approach in Carl E. Schorske9s Fin-de-Siècle Vienna, each chapter
of this monograph is 8issued from a separate foray into the terrain, varying in scale
and focus according to the nature of the problem9.

It is intended to lay rigorous and solid groundwork in dealing with S-arithmetic
groups in algebraic groups deûned over a global ûeld ý. At the outset, we examine
the fundamental case of the general linear group. Additionally, we survey some of
the historical sources, which might be helpful for understanding the genesis of this
mathematical area.

We begin with an analysis of the normal subgroup structure of the general linear
group GLÿ over a (non-commutative) ring with identity and an introduction of the
basic concepts regarding S-arithmetic groups in GLÿ. By deûnition, the ring Oý,S

of S-integers in a global ûeld ý, associated with a ûnite set S of places of ý which
includes the archimedean ones in the case of an algebraic number ûeld, is the ring
of elements of ý integral at each place outside of S. If ý is an algebraic number ûeld
and S consists only of the archimedean places of ý, the ring of S-integers in ý is the
usual ring of integers Oý in ý. AnS-arithmetic subgroup of ÿÿÿ (ý) is deûned to be
a subgroup which is commensurable withÿÿÿ (Oý,S). Any ideal ÿ inOý,S gives rise
to the principal S-congruence subgroup GLÿ (Oý,S , ÿ) of level ÿ. It is deûned as the
kernel of the group homomorphism GLÿ (Oý,S) −→ GLÿ (Oý,S/ÿ), thus a normal
subgroup of ûnite index in the S-arithmetic group GLÿ (Oý,S). Any S-arithmetic
subgroup that contains a principal S-congruence subgroup for some ideal ÿ is
called a congruence subgroup. We indicate how S-arithmetic groups, depending
on the form of S, can be naturally viewed as discrete subgroups in a reductive
Lie group, real, ý-adic or product of such groups, to be denoted

�
ÿ∈S ÿ ÿ =:

ÿS . For each place ÿ ∈ S, there is a corresponding homogeneous space ÿÿ , and an
S-arithmetic subgroup, viewed as a discrete subgroup of ÿS , naturally acts on the
product ÿS :=

�
ÿ∈S ÿÿ . The resulting orbit spaces are the objects that concern

us. Having these essentials in place, we follow diûerent thematic branches. As a
conclusion to the ûrst part of the book, pointing towards the geometric perspective,
we discuss reduction theory in the case of arithmetically deûned subgroups of the
group of orientation preserving isometries of hyperbolic 3-space and study the orbit
spaces.

The second part begins with the uniform construction of Siegel sets in the case
GLÿ over the basic cases of a global ûeld, namely, the ûeld Q of rational numbers
or the ûeld ýÿ (ý) of rational functions in the variable ý and having coeûcients in
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Preface xi

the ûnite ûeld ýÿ. This chapter develops the theory of successive minima in each
case. In the following chapter, we look at reduction theory for GLÿ in a diûer-
ent manner. We deûne the notion of (semi)-stability for Euclidean Z-lattices, or,
more generally, for arithmetic Oý-lattices, and construct their immanent canonical
ûltration.

Then, in Chapter 8, we take up the general case of an S-arithmetic subgroup
of an algebraic group over a global ûeld ý. To illustrate the various notions, we
deal with important families of examples: we carry out Chevalley9s construction
of group schemes over Z, which give rise to Q-split reductive algebraic Q-groups,
endowed with a natural integral structure. Besides the general making of these
Z-group schemes, the cases that originate from root systems (and related weight
lattices) of type ýÿ−1 andÿÿ are dealt with in detail. Next, in the case of an algebraic
number ûeld, we associate with a given maximal Oý-order ý in a central simple ý-
algebra ý an aûne smooth Oý-group scheme SLý of ûnite type. This construction
provides integral structures on the algebraic ý-group SLý, an inner form of the
special linear group. This is supplemented by a discussion of outer forms, namely,
special unitary groups attached to division algebras, equipped with an involution
of the second kind, and suitable arithmetic subgroups. We ûnally exhibit various
applications of the local3global principle encoded in the Brauer3Hasse3Noether
theorem and the corresponding exact sequence of Brauer groups attached to ý.
This concerns the construction of central division algebras with speciûc local
behaviour. These results allow us to exhibit diûerent ý-forms of the special linear
group.

As indicated in the case of the general linear group, S-arithmetic subgroups �

of algebraic ý-groups give rise to geometric objects, e.g. symmetric spaces and
Bruhat3Tits buildings alike, and products of such, on which S-arithmetic groups
act. The corresponding orbit spaces form critical components of the study of the
S-arithmetic groups. In Chapter 9, we introduce these spaces and exhibit some
of their properties. Then, with a focus on the case of an algebraic number ûeld,
and S is equal to the set of archimedean places of ý, we study arithmetic groups
in unipotent groups and algebraic ý-tori. Next we treat Godement9s compactness
criterion for the orbit space �\ÿ attached to an arithmetic group � in an algebraic
ý-group ÿ and its action on ÿ := ÿS . Consequences here include the fact that the
image of an arithmetic group under a surjective morphism of algebraic ý-groups
is an arithmetic group. As an application of the criterion, we are in the position to
construct in detail various families of examples, both compact and non-compact,
of orbit spaces.

In Chapters 10 and 11, given an arithmetic subgroup of a connected reductive
ý-group, we go more deeply into the geometry of the orbit space �\ÿ , endowed with
a Riemannian structure. We focus on constructing totally geodesic cycles in �\ÿ
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xii Preface

which originate from reductive subgroups ÿ of ÿ. More precisely, in an obvious
notation, a reductive ý-subgroup ÿ of ÿ gives rise to a natural map

ÿÿ |� : (� ∩ ÿ (ý))\ÿÿ −→ �\ÿ.

The basic results, which are proved in Chapter 10, guarantee that this map (by pass-
ing to a ûnite covering if necessary) is a proper, injective, closed embedding, and so
that each connected component of the image is an orientable, totally geodesic sub-
manifold of �\ÿ . This requires us to treat critical questions regarding orientability.
In many cases, it will be shown that these cycles, to be called geometric cycles, yield
non-vanishing (co)homology classes for the underlying orbit space �\ÿ . This result
is based on an analysis of the intersection number of a given geometric cycle with
a suitably chosen geometric cycle of complementary dimension. Unfortunately,
geometric cycles of complementary dimension usually intersect in a complicated
set, possibly of dimension greater than zero. To handle this situation, the theory of
8excess intersections9 has to be introduced. Under suitable conditions, the intersec-
tion number of two such cycles can be expressed as the sum of the Euler numbers of
the excess bundles corresponding to the connected components of the intersection.

In Chapter 12, we state the core results in reduction theory for the adelic points
of a connected reductive algebraic group deûned over a global ûeld ý. The standard
methods of proof (for which we refer to the literature) depend on whether ý is an
algebraic number ûeld or a function ûeld. We sketch a uniform approach in the
case of split ý-groups, which rests on the concept of adelic heights.

We conclude this preface with a personal note: against all expectations, there
are only two passages in the book where we talk about cohomology of arithmetic
groups. First, in the case of arithmetic groups � in unipotent Q-groups ý, one
ûnds in Section 9.3 an algebraic proof of the result that the cohomology groups
ÿ∗ (�, ý) and ÿ∗ (ý, ý) are isomorphic for any ûnite-dimensional ý-module M.
This is a rational version of van Est9s theorem. Second, Section 11.6 gives a short
outlook on how the investigations of geometric cycles and the analysis of suitable
intersection numbers can be used to obtain non-vanishing results for the cohomology
of arithmetic groups.

As one can see from the table of contents, this book comprises two parts, distin-
guishable from one another by their level of sophistication, technical understanding
required, and essential prerequisites that are assumed from the reader. In particular,
Part II is based on a solid familiarity with the theory of algebraic ý-groups. As an
additional aid for readers, we include three Appendices, ûlling in some background
material. Appendix A reviews main notions and results from the theory of aûne
group schemes and algebraic ý-groups. Appendix B is a brief account of the def-
initions and key results regarding global ûelds; it also serves to ûx notations for
the text. Finally, due to a lack of a suitable reference, Appendix C compiles (with
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Preface xiii

complete proofs) basic facts concerning proper actions of topological groups on
topological spaces, with special emphasis on discrete groups.

In view of the richness of the mathematical terrain of arithmetic groups, the
account we give can only be very selective in its choices and can only touch upon
its most salient characteristics. Nevertheless, we hope that the reader will be able to
obtain a reasonably detailed understanding of this area of research and to experience
its beauty.

We regret that we had to exclude various, even basic, results as beyond the scope
of this manuscript. However, the interested reader will ûnd open questions and
directions for further research or study scattered in the text.
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