Reduction Theory and Arithmetic Groups

Arithmetic groups are generalisations, to the setting of algebraic groups over a global field, of the subgroups of finite index in the general linear group with entries in the ring of integers of an algebraic number field. They are rich, diverse structures, and they arise in many areas of study.

This text enables you to build a solid, rigorous foundation in the subject. It first develops essential geometric and number of theoretical components to the investigations of arithmetic groups and then examines a number of different themes, including reduction theory, (semi)-stable lattices, arithmetic groups in forms of the special linear group, unipotent groups and tori, and reduction theory for adelic coset spaces. Also included is a thorough treatment of the construction of geometric cycles in arithmetically defined locally symmetric spaces and some associated cohomological questions. Written by a renowned expert, this book will be a valuable reference for researchers and graduate students alike.

JOACHIM SCHWERMER is Emeritus Professor of Mathematics at the University of Vienna, and recently Guest Researcher at the Max-Planck-Institute for Mathematics, Bonn. He was Director of the Erwin-Schrödinger-Institute for Mathematics and Physics, Vienna, from 2011 to 2016. His research focuses on questions arising in the arithmetic of algebraic groups and the theory of automorphic forms.
Reduction Theory and Arithmetic Groups

JOACHIM SCHWERMER

University of Vienna
Contents

Preface page ix

PART I ARITHMETIC GROUPS IN THE GENERAL LINEAR GROUP 1

1 Modules, Lattices, and Orders 3
 1.1 Modules 4
 1.2 Projective R-modules 7
 1.3 Modules of fractions and localisation 10
 1.4 Lattices 14
 1.5 Integrality properties 18
 1.6 Discrete valuation rings, Dedekind domains, and overrings 20
 1.7 Modules over Dedekind domains 26
 1.8 Central simple algebras 28
 1.9 Orders in algebras 37
 1.10 Non-abelian Galois cohomology 43

2 The General Linear Group over Rings 46
 2.1 Elementary matrices 47
 2.2 The stable structure of GL_n 53
 2.3 The stable range of a Dedekind domain 59
 2.4 The stable range of orders in division algebras 61
 2.5 An application: Mennicke symbols and their properties 63

3 A Menagerie of Examples: A Historical Perspective 70
 3.1 Reduction theory of quadratic forms 71
 3.2 Lattices in Euclidean space 78
 3.3 Unit groups of number fields 82
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>Unit groups in division algebras: the theorem of Käte Hey</td>
<td>83</td>
</tr>
<tr>
<td>3.5</td>
<td>The modular group</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>Arithmetic Groups</td>
<td>90</td>
</tr>
<tr>
<td>4.1</td>
<td>Rings of S-integers: general concept and results</td>
<td>91</td>
</tr>
<tr>
<td>4.2</td>
<td>Global fields</td>
<td>93</td>
</tr>
<tr>
<td>4.3</td>
<td>Rings of S-integers in global fields</td>
<td>97</td>
</tr>
<tr>
<td>4.4</td>
<td>Arithmetic and S-arithmetic groups</td>
<td>102</td>
</tr>
<tr>
<td>4.5</td>
<td>Arithmetic groups: their ambient Lie groups</td>
<td>104</td>
</tr>
<tr>
<td>4.6</td>
<td>S-arithmetic groups: their ambient Lie groups</td>
<td>105</td>
</tr>
<tr>
<td>4.7</td>
<td>The general linear group over the ring of adeles</td>
<td>108</td>
</tr>
<tr>
<td>4.8</td>
<td>Strong approximation property and consequences</td>
<td>113</td>
</tr>
<tr>
<td>4.9</td>
<td>Elements of finite order in $GL_n(\mathbb{Z})$</td>
<td>118</td>
</tr>
<tr>
<td>5</td>
<td>Arithmetically Defined Kleinian Groups and Hyperbolic 3-Space</td>
<td>122</td>
</tr>
<tr>
<td>5.1</td>
<td>Kleinian groups acting on hyperbolic 3-space</td>
<td>122</td>
</tr>
<tr>
<td>5.2</td>
<td>Bianchi groups</td>
<td>124</td>
</tr>
<tr>
<td>5.3</td>
<td>Reduction theory for Bianchi groups</td>
<td>126</td>
</tr>
<tr>
<td>5.4</td>
<td>Arithmetic groups originating from orders in quaternion division algebras</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>PART II ARITHMETIC GROUPS OVER GLOBAL FIELDS</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lattices: Reduction Theory for GL_n</td>
<td>141</td>
</tr>
<tr>
<td>6.1</td>
<td>The basic cases of a global field: the number field \mathbb{Q} and a rational function field $F_q(t)$</td>
<td>142</td>
</tr>
<tr>
<td>6.2</td>
<td>Minkowski inequalities or successive minima</td>
<td>143</td>
</tr>
<tr>
<td>6.3</td>
<td>Mahler’s compactness criterion</td>
<td>150</td>
</tr>
<tr>
<td>7</td>
<td>Reduction Theory and (Semi)-Stable Lattices</td>
<td>152</td>
</tr>
<tr>
<td>7.1</td>
<td>Euclidean \mathbb{Z}-lattices</td>
<td>153</td>
</tr>
<tr>
<td>7.2</td>
<td>Arithmetic O_q-lattices</td>
<td>159</td>
</tr>
<tr>
<td>7.3</td>
<td>Canonical filtration, (semi)-stable lattices</td>
<td>164</td>
</tr>
<tr>
<td>7.4</td>
<td>Reduction theory and the canonical filtration for \mathbb{Z}-lattices</td>
<td>167</td>
</tr>
<tr>
<td>7.5</td>
<td>Comparison</td>
<td>171</td>
</tr>
<tr>
<td>8</td>
<td>Arithmetic Groups in Algebraic k-Groups</td>
<td>174</td>
</tr>
<tr>
<td>8.1</td>
<td>Arithmetic groups</td>
<td>175</td>
</tr>
<tr>
<td>8.2</td>
<td>Chevalley group schemes over \mathbb{Z}</td>
<td>178</td>
</tr>
<tr>
<td>8.3</td>
<td>Integral structures for inner k-forms of SL_n</td>
<td>186</td>
</tr>
<tr>
<td>8.4</td>
<td>Integral structures for arbitrary k-forms of SL_n</td>
<td>191</td>
</tr>
<tr>
<td>8.5</td>
<td>Division algebras with prescribed local behaviour</td>
<td>199</td>
</tr>
</tbody>
</table>
Contents

9 Arithmetic Groups, Ambient Lie Groups, and Related Geometric Objects 202
 9.1 Homogeneous spaces, locally symmetric spaces 203
 9.2 S-arithmetic groups and affine buildings 205
 9.3 Arithmetic groups in unipotent groups 206
 9.4 Arithmetic groups in algebraic k-tori 211
 9.5 Godement's compactness criterion 219
 9.6 Constructions of compact or non-compact arithmetic quotients 232

10 Geometric Cycles 237
 10.1 Construction of geometric cycles 238
 10.2 Orientability 241
 10.3 Intersection numbers, excess bundles, and Euler numbers 245

11 Geometric Cycles via Rational Automorphisms 249
 11.1 Prelude 250
 11.2 Fixed points and non-abelian Galois cohomology 252
 11.3 Intersection numbers of special geometric cycles 256
 11.4 The Euler number of the excess bundle 258
 11.5 Non-vanishing of the intersection number of two geometric cycles 268
 11.6 Construction of cohomology classes: an outlook 272

12 Reduction Theory for Adelic Coset Spaces 274
 12.1 Preliminaries: adelic coset spaces 275
 12.2 The adele groups $G(\mathbb{A}_k)$ and $G(\mathbb{A}_k)^1$ 276
 12.3 Adelic heights and their properties 279
 12.4 Reduction theory for GL_n: Minkowski revisited 285
 12.5 Compactness criterion and Siegel domains 289
 12.6 The case of connected reductive k-split groups: a sketch 291

PART III APPENDICES 297

Appendix A Linear Algebraic Groups: A Review 299
 A.1 Affine k-group schemes with k a ring 299
 A.2 Hopf algebras and affine k-group schemes 304
 A.3 Smoothness 307
 A.4 Operations and representations 308
 A.5 Restriction and induction of G-modules 311
 A.6 Cohomology of G-modules 313
 A.7 Weil restriction or restriction of scalars 314
 A.8 Unipotent groups 317
 A.9 Diagonalisable and multiplicative groups 319
Contents

A.10 Algebraic k-tori 321
A.11 Reductive groups 322
A.12 Forms of algebraic groups 324

Appendix B Global Fields

- B.1 Absolute values and local fields 326
- B.2 Global fields 328
- B.3 Restricted products of topological spaces 330
- B.4 The ring of adeles 331
- B.5 The idele group 333
- B.6 S-integers and S-units 334

Appendix C Topological Groups, Homogeneous Spaces, and Proper Actions

- C.1 Topological groups 335
- C.2 Topological transformation groups 339
- C.3 Locally compact transformation groups 341
- C.4 Proper maps 341
- C.5 Proper actions of topological groups 343
- C.6 Characterisation of proper actions 346

References 350
Index 357
Preface

Arithmetic groups are generalisations, to the setting of algebraic groups defined over a global field, of the subgroups of finite index in the general linear group $\text{GL}_n(\Lambda)$ with entries in the ring of integers Λ of an algebraic number field k or, more generally, an order Λ in a finite-dimensional division algebra over k. Historically such groups arose naturally in the study of arithmetic properties of quadratic forms. The study of reduction of such forms, as developed by Gauss, Hermite, and Minkowski, among others, gave a powerful way to select, from the infinitely many forms, that are integrally equivalent to a given form, one that is intrinsically characterised by suitable conditions on its entries. Minkowski, following a suggestion made by Gauss in 1831, created a new version of reduction theory by working with lattices as geometric objects. His works, especially his geometric point of view, served as substantial stimuli for Siegel’s studies of quadratic, symplectic, or Hermitian forms and their associated discontinuous groups. Since the development of the general theory of linear algebraic groups over fields, it has been natural to view arithmetic groups as a rich integral extension of that algebro-geometric theory. Thus, thanks to the work of Chevalley, Borel, Serre, Harder, and Raghunathan, the study of arithmetic groups today can start from the theory of algebraic groups defined over a field k, which is either an algebraic number field or a finite separable extension of $F_q(t)$, where F_q is a finite field and t is transcendental over F_q, i.e. k is a global field.

An arithmetic group Γ acts on a homogeneous space which is defined by the ambient algebraic group. This action and the study of the orbit space are of interest, both intrinsically and for the insight into the structure of Γ. Thus, there is an essential geometric component to the investigations of these groups. Further, arithmetic groups arise in a wide variety of mathematical contexts, ranging from differential geometry, in particular, the theory of locally symmetric spaces, topology, geometric group theory, to number theory and arithmetic algebraic geometry, the theory of automorphic forms over global fields, and even lately quantum computing.
Therefore, on the one hand, ‘Arithmetic Groups’ do not present themselves as a coherent limited theory, so that a book dealing with this area faces a challenge. On the other hand, there are some overarching results and constructions, in particular, regarding reduction theory, which are fundamental to many of the areas discussed above and which are likely to be used in different contexts. Thus, as a resolution, inspired by the approach in Carl E. Schorske’s *Fin-de-Siècle Vienna*, each chapter of this monograph is ‘issued from a separate foray into the terrain, varying in scale and focus according to the nature of the problem’.

It is intended to lay rigorous and solid groundwork in dealing with S-arithmetic groups in algebraic groups defined over a global field k. At the outset, we examine the fundamental case of the general linear group. Additionally, we survey some of the historical sources, which might be helpful for understanding the genesis of this mathematical area.

We begin with an analysis of the normal subgroup structure of the general linear group GL_n over a (non-commutative) ring with identity and an introduction of the basic concepts regarding S-arithmetic groups in GL_n. By definition, the ring $O_{k,S}$ of S-integers in a global field k, associated with a finite set S of places of k which includes the archimedean ones in the case of an algebraic number field, is the ring of elements of k integral at each place outside of S. If k is an algebraic number field and S consists only of the archimedean places of k, the ring of S-integers in k is the usual ring of integers O_k in k. An S-arithmetic subgroup of $\text{GL}_n(k)$ is defined to be a subgroup which is commensurable with $\text{GL}_n(O_{k,S})$. Any ideal q in $O_{k,S}$ gives rise to the principal S-congruence subgroup $\text{GL}_n(O_{k,S}, q)$ of level q. It is defined as the kernel of the group homomorphism $\text{GL}_n(O_{k,S}) \to \text{GL}_n(O_{k,S}/q)$, thus a normal subgroup of finite index in the S-arithmetic group $\text{GL}_n(O_{k,S})$. Any S-arithmetic subgroup that contains a principal S-congruence subgroup for some ideal q is called a congruence subgroup. We indicate how S-arithmetic groups, depending on the form of S, can be naturally viewed as discrete subgroups in a reductive Lie group, real, p-adic or product of such groups, to be denoted $\prod_{v \in S} G_v =: G_S$. For each place $v \in S$, there is a corresponding homogeneous space X_v, and an S-arithmetic subgroup, viewed as a discrete subgroup of G_S, naturally acts on the product $X_S := \prod_{v \in S} X_v$. The resulting orbit spaces are the objects that concern us. Having these essentials in place, we follow different thematic branches. As a conclusion to the first part of the book, pointing towards the geometric perspective, we discuss reduction theory in the case of arithmetically defined subgroups of the group of orientation preserving isometries of hyperbolic 3-space and study the orbit spaces.

The second part begins with the uniform construction of Siegel sets in the case GL_n over the basic cases of a global field, namely, the field \mathbb{Q} of rational numbers or the field $F_q(t)$ of rational functions in the variable t and having coefficients in

© in this web service Cambridge University Press & Assessment www.cambridge.org
Preface

xi

the finite field F_q. This chapter develops the theory of successive minima in each case. In the following chapter, we look at reduction theory for GL_n in a different manner. We define the notion of (semi)-stability for Euclidean \mathbb{Z}-lattices, or, more generally, for arithmetic O_k-lattices, and construct their immanent canonical filtration.

Then, in Chapter 8, we take up the general case of an S-arithmetic subgroup of an algebraic group over a global field k. To illustrate the various notions, we deal with important families of examples: we carry out Chevalley’s construction of group schemes over \mathbb{Z}, which give rise to \mathbb{Q}-split reductive algebraic \mathbb{Q}-groups, endowed with a natural integral structure. Besides the general making of these \mathbb{Z}-group schemes, the cases that originate from root systems (and related weight lattices) of type \mathbb{A} and \mathbb{D} are dealt with in detail. Next, in the case of an algebraic number field, we associate with a given maximal O_k-order M in a central simple \mathbb{Q}-algebra A an affine smooth O_k-group scheme SL_A of finite type. This construction provides integral structures on the algebraic k-group SL_A, an inner form of the special linear group. This is supplemented by a discussion of outer forms, namely, special unitary groups attached to division algebras, equipped with an involution of the second kind, and suitable arithmetic subgroups. We finally exhibit various applications of the local–global principle encoded in the Brauer–Hasse–Noether theorem and the corresponding exact sequence of Brauer groups attached to \mathbb{Q}.

This concerns the construction of central division algebras with specific local behaviour. These results allow us to exhibit different k-forms of the special linear group.

As indicated in the case of the general linear group, S-arithmetic subgroups Γ of algebraic k-groups give rise to geometric objects, e.g. symmetric spaces and Bruhat–Tits buildings alike, and products of such, on which S-arithmetic groups act. The corresponding orbit spaces form critical components of the study of the S-arithmetic groups. In Chapter 9, we introduce these spaces and exhibit some of their properties. Then, with a focus on the case of an algebraic number field, and S is equal to the set of archimedean places of k, we study arithmetic groups in unipotent groups and algebraic k-tori. Next we treat Godement’s compactness criterion for the orbit space $\Gamma \backslash X$ attached to an arithmetic group Γ in an algebraic k-group G and its action on $X := X_S$. Consequences here include the fact that the image of an arithmetic group under a surjective morphism of algebraic k-groups is an arithmetic group. As an application of the criterion, we are in the position to construct in detail various families of examples, both compact and non-compact, of orbit spaces.

In Chapters 10 and 11, given an arithmetic subgroup of a connected reductive k-group, we go more deeply into the geometry of the orbit space $\Gamma \backslash X$, endowed with a Riemannian structure. We focus on constructing totally geodesic cycles in $\Gamma \backslash X$.
which originate from reductive subgroups H of G. More precisely, in an obvious notation, a reductive k-subgroup H of G gives rise to a natural map

$$j_H|_\Gamma: (\Gamma \cap H(k)) \setminus X_H \to \Gamma \setminus X.$$

The basic results, which are proved in Chapter 10, guarantee that this map (by passing to a finite covering if necessary) is a proper, injective, closed embedding, and so that each connected component of the image is an orientable, totally geodesic submanifold of $\Gamma \setminus X$. This requires us to treat critical questions regarding orientability. In many cases, it will be shown that these cycles, to be called geometric cycles, yield non-vanishing (co)homology classes for the underlying orbit space $\Gamma \setminus X$. This result is based on an analysis of the intersection number of a given geometric cycle with a suitably chosen geometric cycle of complementary dimension. Unfortunately, geometric cycles of complementary dimension usually intersect in a complicated set, possibly of dimension greater than zero. To handle this situation, the theory of ‘excess intersections’ has to be introduced. Under suitable conditions, the intersection number of two such cycles can be expressed as the sum of the Euler numbers of the excess bundles corresponding to the connected components of the intersection.

In Chapter 12, we state the core results in reduction theory for the adelic points of a connected reductive algebraic group defined over a global field \mathbb{F}. The standard methods of proof (for which we refer to the literature) depend on whether \mathbb{F} is an algebraic number field or a function field. We sketch a uniform approach in the case of split \mathbb{F}-groups, which rests on the concept of adelic heights.

We conclude this preface with a personal note: against all expectations, there are only two passages in the book where we talk about cohomology of arithmetic groups. First, in the case of arithmetic groups Γ in unipotent \mathbb{Q}-groups U, one finds in Section 9.3 an algebraic proof of the result that the cohomology groups $H^\ast(\Gamma, M)$ and $H^\ast(U, M)$ are isomorphic for any finite-dimensional U-module M. This is a rational version of van Est’s theorem. Second, Section 11.6 gives a short outlook on how the investigations of geometric cycles and the analysis of suitable intersection numbers can be used to obtain non-vanishing results for the cohomology of arithmetic groups.

As one can see from the table of contents, this book comprises two parts, distinguishable from one another by their level of sophistication, technical understanding required, and essential prerequisites that are assumed from the reader. In particular, Part II is based on a solid familiarity with the theory of algebraic k-groups. As an additional aid for readers, we include three Appendices, filling in some background material. Appendix A reviews main notions and results from the theory of affine group schemes and algebraic k-groups. Appendix B is a brief account of the definitions and key results regarding global fields; it also serves to fix notations for the text. Finally, due to a lack of a suitable reference, Appendix C compiles (with
complete proofs) basic facts concerning proper actions of topological groups on topological spaces, with special emphasis on discrete groups.

In view of the richness of the mathematical terrain of arithmetic groups, the account we give can only be very selective in its choices and can only touch upon its most salient characteristics. Nevertheless, we hope that the reader will be able to obtain a reasonably detailed understanding of this area of research and to experience its beauty.

We regret that we had to exclude various, even basic, results as beyond the scope of this manuscript. However, the interested reader will find open questions and directions for further research or study scattered in the text.

Acknowledgements I am grateful to all my students and graduate students over the years in Vienna whose valuable questions and insights in our seminars helped to convince me of the value of writing this book. In particular, I owe a great debt to Gerald Gotsbacher, Ognjen Vukadin, Sascha Biberhofer, Susanne Schimpf, Steffen Kionke, Sophie Koch, and Johannes Girsch.

First and foremost, Stefan Kühnlein and Joachim Mahnkopf devoted considerable time and effort in reading the manuscript. I gratefully acknowledge their valuable help and advice both in detecting errors or inaccuracies and suggesting improvements.

Furthermore, I am grateful for encouragement and comments from many people who read and commented on earlier versions of individual chapters of this work. For special mention, I must single out Jens C. Jantzen, Ulrich Stuhler, James Cogdell, Don Blasius, Hayuk Sengun, and Tony Scholl.

I gratefully acknowledge the support of the Max Planck Institute for Mathematics, Bonn, in the academic years 2019–20 and 2020–21 where much of the work on this book was carried out.