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Modules, Lattices, and Orders

In this chapter we present essential background. We rapidly review some basic facts

in the theory of rings and modules. In particular, we introduce the concept of a

lattice over an integral domain and examine some basic properties of lattices. Next,

after a quick review of integrality, we focus on the case of Dedekind domains, a

notion that encompasses both the ring of algebraic integers of number fields, that is,

of field extensions ofQ of finite degree, and certain rings of algebraic functions. We

briefly discuss some basic results regarding the ring-theoretic structure of Dedekind

domains and their overrings, as well as the structure theory of finitely generated

modules over such rings. Then we deal with central simple algebras over a field,

crossed products, and cyclic algebras. We introduce the concept of an order in a

finite-dimensional separable algebra defined over the quotient field of a Dedekind

domain. The chapter concludes with a discussion of notions from non-abelian

Galois cohomology that are needed in the theory of algebraic groups as well as in

the geometric investigations in Chapters 10 and 11.

Proofs are often omitted, especially when they are readily available in standard

texts in algebra, commutative algebra, or the arithmetic theory of orders such

as Jantzen and Schwermer (2014), Serre (1968), Atiyah and Macdonald (1969),

Deuring (1968), and Reiner (2003). We shall seldom specify the exact location in

these references where the proofs can be found. Naturally, there are some special

topics that have importance for us but are less well known or perhaps not stated in

the literature in the way we need. For these topics, we often give proofs.

This chapter is intended more as a resume of needed background than as a

complete introduction to its material. It also serves to fix notation and conventions.

It is suggested to start straightaway with Chapter 2 and then refer back to the

algebraic foundations in Chapter 1 as is necessary.
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4 Modules, Lattices, and Orders

1.1 Modules

In this section, let ý denote a ring, not necessarily commutative, with unit element

1. All ý-modules are left ý-modules, unless otherwise specified. Each ý-module

ý is assumed to satisfy the condition 1 · ÿ = ÿ for all ÿ * ý .

If (ýÿ)ÿ*ý is any family of ý-modules, we have their direct sum
�

ÿ*ý ýÿ; its

elements are families (ÿÿ)ÿ*ý with ÿÿ * ýÿ, ÿ * ý, and almost all ÿÿ are 0. Addition

of elements and scalar multiplication are given in the obvious way. Note that we

obtain the direct product
�

ÿ*ý ýÿ if we drop the restriction on the number of non-

zero ÿÿs. If (ýÿ)ÿ*ý is a family of submodules of an ý-module ý , there is an

ý-linear map ÿ :
�

ÿ*ý ýÿ 2³ ý , defined by (ÿÿ)ÿ*ý §³
!

ÿ*ý ÿÿ. Its image is the

ý-submodule

!

ÿ*ý

ýÿ :=

!

!

ÿ*ý

ÿÿ | ÿÿ * ýÿ, ÿÿ = 0 for almost all ÿ

�

in ý . If ÿ is injective, we say that the sum of the ýÿ is direct and write, by abuse

of notation,
!

ÿ*ý ýÿ =
�

ÿ*ý ýÿ. We have ý1 + ý2 = ý1 · ý2 if and only if

ý1 + ý2 = {0}.

If ý is an ý-module and ý an index set, we can consider the family (ýÿ)ÿ*ý
with ýÿ = ý for all ÿ * ý. In such a case we write ý (ý ) =

�

ÿ*ý ýÿ, and

ý ý =
�

ÿ*ý ýÿ. In the case, ý = {1, . . . , ÿ} for some non-negative integer ÿ, we

write ýÿ = ý (ý ) = ý ý .

Definition 1.1.1 Let ý be an ý-module, and let ý be an arbitrary index set. Given

a family (ÿÿ)ÿ*ý of elements in ý , there is a linear map

ÿ : ý (ý ) 2³ ý, (ÿÿ)ÿ*ý §³
!

ÿ*ý

ÿÿÿÿ.

We call the family (ÿÿ)ÿ*ý a set of generators for ý (over ý) if ÿ is surjective. We

say that (ÿÿ)ÿ*ý is linearly independent (over ý) if ÿ is injective. Finally, (ÿÿ)ÿ*ý
is a basis of ý (over ý) if ÿ is bijective.

We call an ý-module ý a free ý-module if ý has a basis over ý. Whereas two

bases of a finite-dimensional vector space over a field contain the same number of

elements, this is not necessarily the case for free modules over an arbitrary ring.

However, in the case of a commutative ring ý, the following holds true.

Proposition 1.1.2 Let ý be a non-zero commutative ring, and let ý be an ý-

module. If ÿ1, . . . , ÿÿ and ÿ1, . . . , ÿý are both a basis of ý over ý, then ÿ = ý. We

call the cardinality of a basis of the free ý-module ý the rank of ý .

Proof Since ý is a non-zero commutative ring, ý possesses at least one maximal

ideal ý. Then ý/ý is a field. We denote by ýý the ý-submodule
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1.1 Modules 5

!

ÿ
!

ÿ=1

ÿÿýÿ | ÿ * N, ÿÿ * ý, ýÿ * ý

�

of ý . Then ý/ýý carries an ý/ý-module structure, defined by (ÿ + ý) (ý + ýý) =

ÿý + ýý . The elements ÿ1 + ýý, . . . , ÿÿ + ýý as well as the elements ÿ1 +

ýý, . . . , ÿý + ýý form a basis of the vector space ý/ýý over the field ý/ý; thus,

ÿ = ý. �

Definition 1.1.3 An ý-module ý is said to be finitely generated if it has a finite

set of generators, equivalently, there exists a surjective morphism ýÿ 2³ ý for

some ÿ > 0. We say that ý is a finitely presented ý-module if there exists an exact

sequence ýÿ 2³ ýÿ 2³ ý 2³ 0 for some ÿ, ÿ > 0.

Definition 1.1.4 An ý-module ý is said to be Noetherian if every submodule

of ý is finitely generated over ý. Accordingly, we call the ring ý left-Noetherian

if ý, viewed as a left ý-module, is Noetherian. Similarly, a ring ý is called right-

Noetherian if ý viewed as a right ý-module is Noetherian.

This defining condition is equivalent to either of the following two conditions:

first, the submodules of ý satisfy the ascending chain condition, that is, every

ascending chain of submodules of ý becomes stationary, and, second, every non-

empty set of submodules of ý has a maximal element.

Definition 1.1.5 An ý-module ý is said to be Artinian if ý satisfies the

descending chain condition, that is, every descending chain of submodules of ý

is stationary. A ring ý is called left-Artinian if ý viewed as a left ý-module is

Artinian.

Lemma 1.1.6 Let 0 2³ ý � 2³ ý 2³ ý �� 2³ 0 be a short exact sequence of

ý-modules. Then ý is Noetherian (resp. Artinian) if and only if both ý � and ý ��

are Noetherian (resp. Artinian).

Proof Straightforward exercise for the reader. �

Proposition 1.1.7 Every finitely generated ý-module over a left Noetherian ring

ý is Noetherian.

Proof There is a surjective ý-morphism ýÿ 2³ ý for some ÿ > 0. By Lemma

1.1.6, combined with induction, ýÿ is a Noetherian ý-module. Then the assertion

follows from Lemma 1.1.6. �

Proposition 1.1.8 Let ý be a left Noetherian ring, and let ý be a two-sided ideal

of ý. Then the quotient ring ý/ý is a Noetherian ring.
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6 Modules, Lattices, and Orders

Proof The submodules of ý/ý, viewed as ý/ý-modules, coincide with the submod-

ules of ý/ý, viewed as ý-modules. Such a submodule, say ý , is finitely generated

over ý/ý if and only if ý is finitely generated over ý. Since ý is left Noetherian,

the ý-module ý/ý is Noetherian by Proposition 1.1.7. �

Lemma 1.1.9 If ý and ý are ý-modules such that ý · ý � ý , and ý b (0),

then ý is not a Noetherian module over ý.

Proof Let X be the set of all submodules ý � ¢ ý for which there exists an ý-

submodule ý � ¢ ý such that ý = ý � · ý � and ý �
� ý . The set X is non-empty

since ý � = (0) is an element of X.

Assume there exists a maximal element ý � in X. There exists an ý-module

ý �
� ý with ý = ý � · ý �, and, by our assumption, there is an isomorphism

ÿ : ý · ý ˜2³ý �. It follows that ý � = ÿ(ý) · ÿ(ý); hence

ý = ÿ(ý) · (ÿ(ý) · ý �) = ý �� · ý ��,

where ý �� = ÿ(ý) and ý �� = ÿ(ý) · ý �. Since the morphism ÿ is injective, we

get ý ��
� ý and ÿ(ý) b (0); thus, ý �� * X and ý � � ý ��. Therefore X has no

maximal element. �

Proposition 1.1.10 Let ý b {0} be a left Noetherian ring. If {ÿ1, . . . , ÿÿ} and

{ý1, . . . , ýÿ} are two bases of an ý-module ý , then ÿ = ÿ, that is, two bases of

ý have the same cardinality.

Proof Suppose that ÿ g ÿ. The assumption implies that there are isomorphisms

ý � ýÿ and ý � ýÿ. It follows ýÿ
� ýÿ

� ýÿ·ýÿ2ÿ. Since ýÿ is a Noetherian

module, Lemma 1.1.9 implies ýÿ2ÿ = (0); thus, ÿ = ÿ, because ý is a non-zero

ring. �

We call a chain ý = ý0 " ý1 " · · · " ýÿ = (0) of submodules of an ý-module

a composition series of ý if each quotient ýÿ/ýÿ+1, 0 f ÿ < ÿ is a simple ý-

module, that is, has no submodules except (0) and itself. If this is the case, ÿ is the

length of this chain.

Let 3(ý) = 3ý (ý) denote the least length of a composition series of an ý-module

ý; put 3(ý) = +> if ý has no composition series. Note that, given an ý-module

ý , all composition series of ý have the same length, and, if there is at least one,

every chain of submodules of ý can be refined to a composition series of ý .

By definition, an ý-module is of finite length if ý has a composition series. This

latter property is equivalently characterised by the fact the ý is both Artinian and

Noetherian.

To conclude this section, we briefly recall the notion of tensor algebra and

symmetric algebra attached to a module ý over a commutative ring ý. By definition,

the corresponding tensor algebra of ý is the ý-algebra
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1.2 Projective ý-modules 7

ÿý (ý) :=

>
�

ý=0

ÿ
ý

ý
(ý) with ÿ

ý

ý
(ý) = ·ýý the ýth-tensorial power of ý,

equipped with the usual product ÿ
ý

ý
(ý) × ÿ

ÿ

ý
(ý) 2³ ÿ

ý+ÿ

ý
(ý), defined by the

assignment (ý1 · · · · · ýý, ýý+1 · · · · · ýý+ÿ) §³ ý1 · · · · · ýý+ÿ . This is a graded

ý-algebra, with ÿ0
ý
(ý) = ý and ÿ1

ý
(ý) = ý .

The symmetric algebra of ý , to be denoted Symý (ý), is the algebra obtained

as the quotient of the tensor algebra ÿý (ý) modulo the two-sided ideal ý generated

by the tensors ý · ÿ2 ÿ · ý for all ý, ÿ * ý . It is a commutative ý-algebra, endowed

with the graduation inherited from the one of ÿý (ý). Clearly, Sym0
ý (ý) = ý and

Sym1
ý (ý) = ý . The algebra Symý (ý) has the following universal property: for

every commutative ý-algebra ÿ, there is a natural bijection

Homý2alg (Symý (ý), ÿ) ˜2³ Homý (ý, ÿ),

induced by the inclusion ÿ : ý 2³ Symý (ý), via ÿ §³ ÿ ç ÿ. Given another

ý-module ý , together with an ý-module homomorphism ÿ : ý 2³ ý , the uni-

versal property implies, by taking ÿ = Symý (ý), that there is an ý-algebra homo-

morphism Sym(ÿ) : Symý (ý) 2³ Symý (ý) which is graded. In this manner we

obtain a functor, to be denoted Symý, from the category of commutative ý-modules

to the category of graded commutative ý-algebras.

As another consequence of the universal property, we obtain an isomorphism of

ÿ-algebras

Symý (ý) ·ý ÿ ˜2³ Symÿ (ý ·ý ÿ),

which is functorial in ý and compatible with the grading. Similarly, given two

ý-modules ý, ý �, there is an isomorphism of graded ý-algebras

Symý (ý) · Symý (ý
�) ˜2³ Symý (ý · ý �),

which is functorial in ý and ý �. In the case of a free ý-module ý , say with

basis {ÿ1, . . . , ÿÿ }, the latter isomorphism implies that there is a graded ý-algebra

isomorphism ý[ý1, . . . , ýÿ ] ˜2³ Symý (ý) between the polynomial algebra in the

variables ý1, . . . , ýÿ and the symmetric algebra.

1.2 Projective ý-modules

Now we briefly recall some facts concerning projective ý-modules. Given any

ý-module ý , the functor Homý (ý,2) : Modý 2³ Modý from the category of

ý-modules to itself is left exact. By definition, an ý-module ÿ is projective if

and only if the functor Homý (ÿ,2) is exact. We state without proof the following

alternative characterisations of a projective ý-module.
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8 Modules, Lattices, and Orders

Proposition 1.2.1 Let ÿ be any ý-module. The following assertions are equivalent:

(1) The ý-module ÿ is projective.

(2) Every short exact sequence 0 ³ ÿ ³ ý ³ ÿ ³ 0 of ý-modules splits.

(3) There exists an ý-module ÿ� such that ÿ · ÿ� is a free ý-module.

(4) Given a surjective homomorphism ÿ : ý 2³ ý of ý-modules and given

a homomorphism ÿ : ÿ ³ ý of ý-modules there exists a homomorphism

ÿ : ÿ 2³ ý such that ÿ ç ÿ = ÿ; that is to say, equivalently, the natural map

Homý (ÿ, ý) 2³ Homý (ÿ, ý) is surjective.

Let (ÿÿ)ÿ*ý be any family of ý-modules. Then the very definition of being

projective immediately implies that the direct sum
�

ÿ*ý ÿÿ is projective if and

only if each ÿÿ, ÿ * ý is projective.

If ý is a commutative ring, an ý-module ý , by convention a left ý-module, may

also be viewed naturally as a right ý-module. Thus, given two ý-modules ý, ý

their tensor product ý ·ýý is defined as an ý-module. If ý, ý are both projective,

then ý ·ý ý is also projective.

The following result generalises a well-known fact valid for submodules of free

modules over a principal ideal domain. We call a ring ý a left hereditary ring if

every left ideal of ý is a projective ý-module. We have the following structure result

for submodules of free modules over a left hereditary ring.

Proposition 1.2.2 Let ý be a left hereditary ring. Then any submodule ý of a free

(left) ý-module ý isomorphic to ýý is isomorphic to a direct sum of submodules

isomorphic to left ideals of ý, and therefore ý is projective.

Proof Let ÿ1, . . . , ÿý be a free basis of ý over ý. We proceed by induction over ý.

For ý = 1, the result is clear since the submodules of ý are left ideals. Now assume

that ý > 1. Let ý � be the submodule of ý given as ý � = ýÿ1 + · · · + ýÿý21. Every

element ÿ * ý can be written in the form ÿ =
!ý

ÿ=1 ÿÿÿÿ with uniquely determined

coefficients ÿÿ, ÿ = 1, . . . ý. We consider the ý-homomorphism ÿ : ý 2³ ý, given

by ÿ(ÿ) = ÿý, ÿ * ý . The image is a left ideal ý in ý, and ker ÿ equals the submodule

ý + ý � of ý �. There is an exact sequence

0 2³ ý + ý � 2³ ý 2³ ý 2³ 0.

Since, by assumption on ý, the left ideal ý is a projective ý-module, this sequence

splits; hence, ý � ý · (ý + ý �). By induction hypothesis, ý + ý � is isomorphic

to a direct sum of left ideals of ý. Hence ý is also isomorphic to a direct sum of

left ideals of ý. Since each of them is projective, ý is a projective ý-module. �

We turn our attention to finitely generated projective ý-modules ý , where ý

is assumed to be a commutative ring. Properties of these modules play a decisive
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1.2 Projective ý-modules 9

role, for example, in the discussion of orders in finite-dimensional central simple

algebras.

An alternative characterisation of such an ý-module ý is that ý is a direct sum-

mand of a finitely generated free ý-module. Indeed, since ý is finitely generated,

there is a surjective morphism ÿ : ýÿ 2³ ý for some ÿ > 0. This gives rise to

a short exact sequence 0 ³ ker ÿ ³ ýÿ ³ ý ³ 0. Since ý is projective the

sequence splits, and ý is a direct summand of a finitely generated free ý-module.

Conversely, using Proposition 1.2.1(3), this last property implies that ý is finitely

generated projective since a direct summand of a projective module is projective.

We record the following result for later use. The proof may be found in Lam

(1999, §2B).

Proposition 1.2.3 Let ý be a commutative ring, let ý be a finitely generated pro-

jective ý-module, and let ý* = Homý (ý, ý) be its dual module. Then the canoni-

cal morphism ÿ : ý 2³Homý (ý
*, ý), defined byÿ §³ ÿ(ÿ)with ÿ(ÿ) (ÿ) := ÿ(ÿ)

for all ÿ * ý, ÿ * ý*, is an isomorphism. More generally, given any ý-module

ý , the natural homomorphism ý ·ý ý 2³ Homý (ý
*, ý) is an isomorphism of

ý-modules.

Suppose that ý is a free ý-module of rank ÿ, and let ÿ : ý 2³ ý be an ý-

module endomorphism. Then ÿ can be extended in a unique way to an ý-module

endomorphism ÿ̂ of the exterior power
�7(ý) of ý . The ÿth exterior power

�ÿ (ý)

of ý is a free ý-module of rank one, and, on this component, ÿ̂ is multiplication

by an element of ý. By definition, the determinant det(ÿ) of ÿ is that element.

More generally, if ý be a finitely generated projective ý-module, then ý is a

direct summand in a finitely generated ý-module, say ý · ý �
� ýÿ for some ÿ * N.

If ÿ : ý 2³ ý is an ý-module endomorphism, the determinant det(ÿ · Idý �) is

well defined. Since det(ÿ· Idý �) is independent of the choice of the ý-module ý �,

we can define the determinant of ÿ by det(ÿ) := det(ÿ· Idý �). The usual properties

of determinants are valid, that is, given ý-module endomorphisms ÿ, ÿ : ý 2³ ý ,

we have det(ÿ ç ÿ) = det(ÿ) · det(ÿ), and det(Idý ) = 1ý. Moreover, ÿ is invertible

if and only if det(ÿ) * ý×.

Let ÿ be a commutative ý-algebra. Any ÿ * Endý (ý) gives rise to an endomor-

phism ÿ · Idÿ * Endÿ (ý ·ý ÿ). Then det(ÿ) = det(ÿ ·ý Idÿ) naturally viewed as

elements in ÿ.

The notion of a trace of an endomorphism of a finitely generated projective ý-

module ý can be dealt with in an analogous way, by defining tr(ÿ) := tr(ÿ · 0ý �).

Recall that a non-zero ring ý is called a local ring if ý has a unique maximal left

ideal, or, equivalently, if ý modulo its radical is a division ring. In the case of such

a ring we have (cf. Lam, 2001, Thm. 19.29)
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10 Modules, Lattices, and Orders

Proposition 1.2.4 Let ý be any local ring. Then any finitely generated projective

ý-module ý is a finitely generated free ý-module.

1.3 Modules of fractions and localisation

Throughout this section, ý denotes a commutative ring. A multiplicatively closed

subset of ý is a subset ÿ of ý such that 0 + ÿ, 1 * ÿ, and ÿ is closed under

multiplication. Define a relation, denoted >, on the Cartesian product ý × ÿ as

follows: (ÿ, ý) > (ÿ, ý), where ÿ, ÿ * ý, ý, ý * ÿ, if and only if (ÿý 2 ÿý)ÿ = 0 for

some ÿ * ÿ. Indeed, this relation is reflexive, transitive, and symmetric, thus, an

equivalence relation. Let ÿ/ý denote the equivalence class of (ÿ, ý), and let ÿ21ý

be the set of equivalence classes. Now define

(ÿ/ý) + (ÿ/ý) = (ÿý + ÿý)/ýý resp. (ÿ/ý) · (ÿ/ý) = ÿÿ/ýý

verifying that addition and multiplication are well defined. The set ÿ21ý, endowed

with this structure, forms a commutative ring with unity element 1/1 and zero

element 0/1. We shall call ÿ21ý the ring of fractions of ý with respect to ÿ .

There is a ring homomorphism ÿ : ý 2³ ÿ21ý, defined by ÿ(ÿ) = ÿ/1, where

ÿ * ý. This is not in general injective. However, if ý is an integral domain, the

morphism ÿ is injective, and we may view ý as embedded into ÿ21ý.

As usual in this context, given an ideal ÿ in ý, we define the extension ÿÿ of ÿ

to be the ideal ÿ(ÿ)ÿ21ý generated by ÿ(ÿ) in ÿ21ý; since any element in ÿÿ is of

the form
!

ÿÿ/ýÿ with ÿÿ * ÿ, ýÿ * ÿ we have ÿÿ = ÿ21ÿ. Reversely, if ÿ is an ideal

in ÿ21ý, then ÿý := ÿ21 (ÿ) is an ideal, called the contraction of ÿ . The following

result describes the relation between the ideals in ý and the ideals in ÿ21ý.

Proposition 1.3.1 Let ý be a commutative ring, and let ÿ be a multiplicatively

closed subset of ý.

(1) Every ideal in ÿ21ý is an ideal obtained via extension from an ideal in ý; more

precisely, given an ideal ÿ of ÿ21ý, then ÿ = ÿýÿ.

(2) The prime ideals of ÿ21ý are in one-to-one correspondence via the assignment

ý ±³ ýÿ with the prime ideals of ý which do not meet ÿ.

Proof Left as an exercise to the reader. �

The concept of a ring of fractions with respect to a multiplicatively closed

subset ÿ of ý can be extended to ý-modules ý . Given a multiplicatively closed

subset ÿ of ý, define, as before, an equivalence relation on ý × ÿ as follows:

(ÿ, ý) > (ÿ �, ý�), ÿ,ÿ � * ý, ý, ý� * ÿ, if and only if ÿ(ýÿ � 2 ý�ÿ) = 0 for some

ÿ * ÿ. Let ÿ/ý denote the equivalence class of the pair (ÿ, ý), and let ÿ21ý be the
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1.3 Modules of fractions and localisation 11

set of equivalence classes. We put the structure of an ÿ21ý-module on ÿ21ý with

the obvious definition of addition and scalar multiplication.

Using the canonical homomorphism ÿ : ý 2³ ÿ21ý, we may view the ÿ21ý-

module ÿ21ý as an ý-module. Then we may form the ÿ21ý-module ÿ21ý ·ý ý .

We observe that every element in ÿ21ý ·ý ý can be written in the form ý21 · ÿ

for some ý * ÿ, ÿ * ý . Namely, given ý =
!

(ÿÿ/ýÿ) · ÿÿ where the sum ranges

over a finite index set ý, we set ý :=
�

ÿ*ý ýÿ , and ýÿ :=
�

ÿbÿ ý ÿ for all ÿ * ý. Then

we obtain

ý =
!

ÿ

ý21 (ÿÿýý
21
ÿ ) · ÿÿ =

!

ÿ

ý21 · ÿÿ ýÿÿÿ = ý21 · ÿ,

with ÿ =
!

ÿ ÿÿ ýÿÿÿ. Since the map ÿ � : ÿ21ý × ý 2³ ÿ21ý , defined by the

assignment ((ÿ/ý), ÿ) §³ ÿÿ/ý, is ý-bilinear, there exists a unique ý-module

homomorphism ÿ : ÿ21ý ·ý ý 2³ ÿ21ý satisfying ÿ ((ÿ/ý) · ÿ) = ÿÿ/ý for all

ÿ * ý, ý * ÿ, and ÿ * ý .

Proposition 1.3.2 Let ý be an ý-module, and let ÿ be a multiplicatively closed

subset of ý. Then there exists a unique ÿ21ý-module isomorphism

ÿ : ÿ21ý ·ý ý ˜2³ÿ21ý

such that ÿ ((ÿ/ý) · ÿ) = ÿÿ/ý for all ÿ * ý, ý * ÿ, and ÿ * ý .

Proof Left as an exercise to the reader. �

Let ÿ : ý 2³ ÿ21ý be the canonical map, defined by ÿ §³ ÿ/1. It is of interest

to understand the relation between ÿ21 ý-submodules of ÿ21ý and ý-submodules of

ý . Given an ÿ21ý-submodule ý � of ÿ21ý , we denote by ý := ÿ21(ý �) the inverse

image of ý � under ÿ. We claim that ÿ21ý = ý �. Obviously, ÿ(ý) ¢ ý �. Since ý �

is an ÿ21ý-module, ÿ21ý ¢ ý �. Conversely, if ý/ý * ý �, then ý/1 = ý(ý/ý) * ý �;

thus, ý * ÿ21 (ý �) = ý , and the claim follows.

We observe that the ý-module ý = ÿ21 (ý �) has the following property: Let ý * ÿ,

ÿ * ý such that ýÿ * ý . Then ÿ(ýÿ) = ýÿ/1 * ý �. We obtain ý · (ÿ/1) * ý �;

hence (1/ý)ý · (ÿ/1) * ý �. This shows that ÿ * ý .

This observation gives rise to the following conceptual approach:

Definition 1.3.3 Let ÿ be a multiplicatively closed subset of ý, and let ý be

an ý-module. Given a submodule ý of ý , we call the submodule ÿ21 (ÿ21ý) the

saturation of ý in ý with respect to ÿ. We say that ý is saturated with respect to

ÿ if ý equals its own saturation, equivalently, ý has the property: if ý * ÿ, ÿ * ý

such that ýÿ * ý , then ÿ * ý .

Now, in view of these remarks, it is not difficult to see the following assertion:

see Bourbaki (1985, Chap. II, §2, no.4, Prop. 10).
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Proposition 1.3.4 Let ÿ be a multiplicatively closed subset of ý, let ý be an

ý-module, and let ÿ : ý 2³ ÿ21ý be the canonical map defined by ÿ §³ ÿ/1.

The assignment ý � §³ ÿ21(ý �) gives an inclusion-preserving bijection between the

set of ÿ21ý-submodules ý � of ÿ21ý and the set of ý-submodules ý of ý which

have the following property: if ý * ÿ, ÿ * ý such that ýÿ * ý , then ÿ * ý .

Corollary If ý is a Noetherian (resp. Artinian) ý-module, then the module of

fractions ÿ21ý of ý with respect to a multiplicatively closed subset ÿ of ý is a

Noetherian (resp. Artinian) ÿ21ý-module.

Let ÿ : ý 2³ ý be an ý-module homomorphism. Then, given any multiplicat-

ively closed subset ÿ of ý, there is a corresponding ÿ21ý-module homomorphism

ÿ21ÿ : ÿ21ý 2³ ÿ21ý , defined by ÿ/ý §³ ÿ (ÿ)/ý, ÿ * ý , ý * ÿ. Evidently, the

operation ÿ21 is compatible with the composition of ý-module homomorphisms,

and we have

Proposition 1.3.5 Let ý0

ÿ0
2³ ý1

ÿ1
2³ ý2 be a sequence of ý-modules such that

ýÿ ÿ0 = ÿÿÿ ÿ1, i.e. the sequence is exact at ý1. Then the sequence

ÿ21ý0

ÿ21 ÿ0
2222³ ÿ21ý1

ÿ21 ÿ1
2222³ ÿ21ý2

is exact at ÿ21ý1.

Examples 1.3.6 (1) Let ý be a prime ideal of ý. Then ÿ = ý\ý is multiplicatively

closed. The setÿ := {ÿ/ý | ÿ * ý, ý * ÿ} forms an ideal in ýý := ÿ21ý. If ÿ/ý + ÿ,

then ÿ + ý; hence ÿ * ÿ and therefore ÿ/ý is a unit in ýý. Consequently, given an

ideal ÿ of ýý such that ÿ is not contained in ÿ, then ÿ contains a unit; thus ÿ = ýý.

It follows that ÿ is the only maximal ideal in ýý, that is, ýý is a local ring, called

the localisation of ý at ý.

Observe that the prime ideals of the ring ýý are in one-to-one correspondence

with the prime ideals of ý which do not meet ÿ = ý \ ý, that is, with the prime

ideals of ý contained in ý.

If ý is an ý-module, ý a prime ideal of ý, and ÿ = ý \ ý, we write ýý for the

ÿ21ý-module ÿ21ý , to be called the localisation of ý at ý.

Given an ý-module homomorphism ÿ : ý 2³ ý and a prime ideal ý of ý, we

denote the corresponding ýý-module homomorphism ýý 2³ ýý by ÿý.

(2) Let ÿ * ý, ÿ b 0, with ÿ not nilpotent. Define ÿ to be the set {ÿÿ}ÿg0. Then ÿ

is multiplicatively closed, and we denote ÿ21ý by ý[1/ÿ]. In the case of the ring

ý = Z, ÿ = ý a prime, the ring Z[1/ý] is the ring of all rational integers whose

denominator is a power of ý.

The next result suggests a strong relation between an integral domain ý and all

localisations of ý at prime ideals of ý.
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