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Introduction

The lecture notes that form the basis of this book have been distributed to graduate

students, but the model readers I had in mind when writing them were contestants

in a mathematical olympiad. As I did not want to intimidate such youngsters, I

chose to include prerequisites that they might not be familiar with even if these

prerequisites could be taken for granted when addressing graduates. (They are

collected in Appendix A.) The term ‘simple’ in the subtitle of the book is the

operative word: I aimed to make the material accessible to as wide an audience as

possible.

I used the lecture notes in a course that consisted of twelve 90-minute lectures

and a screening of George Csicsery’s brilliant documentary “N is a number” [92].

In each of its editions, I covered at most nine of the following eleven chapters (and

once also a large part of Appendix A) at a leisurely pace.

Here is how I arrived at the order of the chapters.

1. Erdős’s first important achievement, his 1932 paper proving Bertrand’s postu-

late, seemed a logical choice for the first chapter.

2. His next widely acclaimed result, published in a 1935 paper co-authored with

George Szekeres, was the Happy Ending Theorem. Erdős’s proof of it, chrono-

logically second and quantitatively far superior to the first, is the starting point of

Chapter 2. Its geometric nature suggests continuing with another early geomet-

ric interest of Paul Erdős, his conjecture that was confirmed by Tibor Gallai (né

Grünwald) and became known as the Sylvester–Gallai theorem. As pointed out

by Erdős in 1943, this theorem has a pretty corollary involving points and lines

in the plane. In a 1948 paper, Erdős and Nicolaas de Bruijn proved a combinato-

rial theorem that subsumes this corollary and extends it far beyond the reaches

of geometry. This De Bruijn–Erdős theorem and its several proofs round up

Chapter 2.

3. Not to leave the reader in suspense for too long, we then backtrack to the Happy

Ending Theorem and present its proof by Szekeres. This is done in Chapter 3,

whose main theme is Ramsey’s theorem. At the end of this chapter, I indulge

myself by discussing my second joint paper with Erdős.

4. Another instance of such self-indulgence comes in Chapter 4, where I point

out how a qualitative version of the Erdős–Rado theorem on �-systems can

be viewed as a corollary of Ramsey’s theorem. This observation is linked to a
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2 Introduction

conjecture of Erdős and Lovász on weak and strong �-systems, whose beautiful

proof by Michel Deza concludes the chapter.

5. The Erdős–Rado theorem on �-systems opens the gates of extremal set theory,

which is the subject of Chapter 5. One of the two results closing this chapter is

Erdős’s lower bound on the number of hyperedges in a k-uniform hypergraph of

chromatic number greater than s.

6. This bound subsumes not only Erdős’s lower bound on diagonal Ramsey num-

bers but also a lower bound on van der Waerden numbers, and so van der

Waerden’s theorem on arithmetic progressions is treated in Chapter 6.

7. In Chapter 7, we return to extremal set theory and survey its rich autonomous

branch, extremal graph theory.

8. Chapter 8 stands out by having no links to other chapters. It begins with the

Friendship Theorem of Erdős, Alfréd Rényi, and Vera Sós. Its proof by Herbert

Wilf connects it to strongly regular graphs and the dazzling theorem on Moore

graphs of diameter two by Alan Hoffman and R. R. Singleton.

9. After the detour, the next chapter begins with a reference to the Erdős–Stone–

Simonovits formula of Chapter 7, which features the chromatic number of a

graph. This invariant is the sole subject of Chapter 9. Several proof techniques

used there are early instances of what has become known as the probabilistic

method, and so it seems natural to continue with graph theory and probability.

10. The first two sections of Chapter 10 reproduce two fragments of the Erdős–

Rényi theory of random graphs; the next section reports without proofs the

fascinating results on the evolution of random graphs, with an emphasis on the

double jump and its critical window; the concluding section puts the preceding

material in its natural context of finite probability spaces.

11. Chapter 11 is more of an appendix than a genuine chapter: its theme, Hamilto-

nian graphs, was far from central among Erdős’s interests in discrete mathemat-

ics. I have taken the liberty of recounting in its first section how a result of mine

was directly inspired by Erdős’s delightful algorithmic proof of Turán’s theo-

rem and presenting in the second section my first joint paper with Erdős. (Please

note that I have displayed admirable restraint by not mentioning our third joint

paper anywhere in this book. Except here.) A brief survey of results on Hamilton

cycles in random graphs rounds up this chapter.

I regret the omission of two brilliant and important results, Lovász Local Lemma

[249] and Szemerédi’s Regular Partition Lemma [257]. I could not find a way of

weaving them smoothly into the narrative.

Non-mathematical parts of the text are set in sans serif against a lightly shaded

background like this.

Definitions that are used more than once are collected in Appendix B.
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1 A Glorious Beginning:
Bertrand’s Postulate

In 1845, Joseph Bertrand (1822–1900) conjectured [29] that for every integer n

greater than 3 there is at least one prime p such that n < p < 2n−2. The slightly

weaker proposition,

for every positive integer n

there is at least one prime p such that n < p ≤ 2n,

is known as Bertrand’s postulate [211, Theorem 418]. (As all primes except 2 are

odd, its constraint n < p ≤ 2n amounts to n < p < 2n except when n = 1.) In 1852,

it was proved [67] by Pafnuty Chebyshev (1821–94).

In March 1931, the 18-year-old Erdős found an elegant elementary proof of

Bertrand’s postulate; the following year, this proof appeared in his first publi-

cation [106].a Later, Erdős became fond of quoting Nathan Fine’s couplet that

celebrated this achievement:

Chebyshev said it and I say it again:

There is always a prime between n and 2n.

The first draft of [106] was rewritten by László Kalmár (1905–76), a professor at

the University of Szeged; as Erdős recalls in [131], he said in the introduction that

Srinivasa Ramanujan (1887–1920) found [322] a somewhat similar proof. Erdős’s

proof and its background are described in the next five sections; Ramanujan’s proof

is sketched in section 1.7. Six years after Erdős’s proof appeared, Godfrey Harold

Hardy (1877–1947) and Edward Maitland Wright (1906–2005) included it in their

textbook [211], a classic with its sixth edition appearing in 2008.

1.1 Binomial Coefficients

N OTAT I O N : When m and k are nonnegative integers, the symbol
(

m
k

)

– read

“m choose k” – denotes the number of k-point subsets of a fixed m-point set. For

a Erdős must have considered his 1929 article [105] in a Hungarian mathematics and physics journal for

high school students unimportant: In [131] he refers to [106] as “[my paper . . . ] which was actually

my very first.”
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4 A Glorious Beginning: Bertrand’s Postulate

example, {1, 2, . . . , 5} has precisely ten 3-point subsets, namely,

{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5},
{1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5},

and so
(

5
3

)

= 10.

This combinatorial definition leads directly to a number of identities such as

m
∑

k=0

(

m

k

)

= 2m (1.1)

(both sides count all subsets of a fixed m-point set, the left-hand side groups them by

their size k),
(

m

k

)

=
(

m

m − k

)

(1.2)

(complementation S ↔ T − S sets up a one-to-one correspondence between the set

of all k-point subsets S of a fixed m-point set T and the set of all (m−k)-point subsets

of T), and
(

m

k

)

k =
(

m

k − 1

)

(m − k + 1) (1.3)

(for a fixed m-point set T , both sides count the number of pairs (S, x) such that S ⊆ T ,

|S| = k, and x ∈ S: the left-hand side chooses first S and then x, the right-hand side

chooses first S − {x} and then x).

Erdős’s proof of Bertrand’s postulate employs two standard inequalities which

follow easily from these identities. First, (1.1) with m = 2n + 1 and (1.2) with

m = 2n + 1, k = n imply that
(

2n + 1

n

)

≤ 4n. (1.4)

Second, (1.3) with m = 2n guarantees that
(

2n
n

)

is the largest of the 2n + 1 numbers
(

2n
k

)

with k = 0, 1, . . . , 2n, and so it is the largest of the 2n terms in the sum 2 +
∑2n−1

k=1

(

2n
k

)

, which totals 4n by (1.1) with m = 2n; we conclude that

(

2n

n

)

≥
4n

2n
whenever n ≥ 1. (1.5)

D E FI N I T I O N : The product 1 · 2 · . . . · m of the first m positive integers is called

the factorial of m and denoted m!. The factorial of 0 is defined as 0! = 1.

Induction on k using identity (1.3) shows that
(

m

k

)

=
m!

k!(m − k)!
. (1.6)

This formula is also used in Erdős’s proof.
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1.2 A Lemma 5

The quantities
(

m
k

)

are referred to as the binomial coefficients since they are featured

in the binomial formula

(a + b)m =
m

∑

k=0

(

m

k

)

akbm−k.

Validity of this formula can be perceived by contemplating how its left-hand side,

(a + b)(a + b) · · · (a + b),

distributes into a sum of 2m terms, each having the form akbm−k. The binomial

formula reduces to (1.1) by setting a = b = 1.

1.2 A Lemma

Bertrand’s postulate asserts that, in a sense, primes appear in the sequence of positive

integers relatively often. Paradoxically, Erdős’s proof of the postulate relies on a

lemma asserting that they do not appear too often: the product of all primes not

exceeding a positive integer m is less than 4m.

In number theory it is customary to reserve the letter p for primes; in particular,

Erdős’s lemma can be recorded as
∏

p≤m

p < 4m for every positive integer m. (1.7)

Some eight years after Erdős first proved (1.7), he and Kalmár found independently

and almost simultaneously a simpler proof (see [131]). This proof goes by induction

on m. The induction basis verifies (1.7) when m ≤ 2. In the induction step, we

consider an arbitrary integer m greater than 2 and assume that
∏

p≤k p < 4k whenever

k < m; then we distinguish between two cases. If m is even, then
∏

p≤m

p =
∏

p≤m−1

p < 4m−1.

If m is odd, then m = 2n + 1 with n ≥ 1; since
(

2n + 1

n

)

=
(2n + 1) · 2n · (2n − 1) . . . · (n + 2)

n!
,

every prime in the range n + 1 < p ≤ 2n + 1 divides
(

2n+1
n

)

, and so

∏

p≤m

p =

⎛

⎝

∏

p≤n+1

p

⎞

⎠ ·

⎛

⎝

∏

n+1<p≤2n+1

p

⎞

⎠ ≤

⎛

⎝

∏

p≤n+1

p

⎞

⎠ ·
(

2n + 1

n

)

.

Using the induction hypothesis and (1.4), we conclude that
∏

p≤m

p < 4n+1 · 4n = 4m.
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6 A Glorious Beginning: Bertrand’s Postulate

1.3 The Unique Factorization Theorem

Every child knows that a prime is a positive integer divisible by no positive integer

other than itself and the integer 1. However, not all children may be aware that the

integer 1 is decreed to be not a prime, even though it is divisible by no positive integer

other than itself. Ruling this integer out of the set of all primes is not an arbitrary

decision: ruling it in would ruin the following theorem, known as the Fundamental

Theorem of Arithmetic or the Unique Factorization Theorem.

For every positive integer n and for all primes p,

there are uniquely defined nonnegative integers e(p, n) such that

n =
∏

p

pe(p, n) .

(In the right-hand-side product, p runs through the infinite set of primes, but for every

n only finitely many of the exponents e(p, n) are nonzero: if p > n, then e(p, n) = 0.)

Declaring 1 to be a prime would make the factorization no longer unique: e(1, n)

could assume any nonnegative integer value.

Some people attribute the Unique Factorization Theorem to Euclid [212, Propo-

sition 14 of Book IX], whose Elements appeared around 300 BC, and others to Carl

Friedrich Gauss (1777–1855), whose Disquisitiones Arithmeticae [184] appeared in

the summer of 1801. The controversy is analyzed in [86].

1.4 Legendre’s Formula

When n is the factorial m!, the exponents e(p, n) in the unique factorization

n =
∏

p

pe(p, n)

can be calculated from a neat formula. To begin, for every choice of positive integers

s and t we have

st =

⎛

⎝

∏

p

pe(p, s)

⎞

⎠ ·

⎛

⎝

∏

p

pe(p, t)

⎞

⎠ =
∏

p

pe(p, s)+e(p, t),

and so

e(p, st) = e(p, s) + e(p, t).

It follows that

e(p, m!) = e(p, 1) + e(p, 2) + . . . + e(p, m).

We are going to express the right-hand-side sum in a more transparent way. Let us

begin with the example of p = 2 and m = 9. Here,

e(2, 1) + e(2, 2) + . . . + e(2, 9) = 0 + 1 + 0 + 2 + 0 + 1 + 0 + 3 + 0.

Of the nine terms,
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1.5 Erdős’s Proof of Bertrand’s Postulate 7

• every second one contributes at least one unit to the total,

and there are four such terms,

• every fourth one contributes at least two units to the total,

and there are two such terms,

• every eighth one contributes at least three units to the total,

and there is one such term,

• every 16th one contributes at least four units to the total,

and there are no such terms.

These observations make it clear that

0 + 1 + 0 + 2 + 0 + 1 + 0 + 3 + 0 = 4 + 2 + 1 + 0.

This identity can be illustrated by the array

i=4

i=3 ©
i=2 © ©
i=1 © © © ©

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9

where column j holds a stack of e(2, j) coins: the sum 0 + 1 + 0 + 2 + 0 + 1 + 0 +
3 + 0 of the heights of the nine stacks counts the total number of coins, and the sum

4 + 2 + 1 + 0 counts the same number row by row. In general, for any choice of p

and m, there are stacks 1, 2, . . . , m, and stack j holds e(p, j) coins. Counting the total

number e(p, 1) + e(p, 2) + . . .+ e(p, m) of coins row by row, we end up with the sum

⌊m/p⌋ + ⌊m/p2⌋ + ⌊m/p3⌋ + · · · (where, as usual, ⌊x⌋ denotes x rounded down to

the nearest integer): a coin appears in row i and column j if and only if e(p, j) ≥ i,

which is the case if and only if j is a multiple of pi. It follows that

e(p, m!) =
∞
∑

i=1

⌊

m

pi

⌋

(where only finitely many terms in the infinite sum are not zero). This formula

was presented by Adrien-Marie Legendre (1752–1833) in the second edition of his

book [273] published in 1808.

1.5 Erdős’s Proof of Bertrand’s Postulate

1.5.1 The Plan

Given a positive integer n, we shall choose a positive integer N and prove that

∏

p≤n

pe(p, N) <
∏

p≤2n

pe(p, N) , (1.8)
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8 A Glorious Beginning: Bertrand’s Postulate

which obviously implies Bertrand’s postulate. Our choice is N =
(

2n
n

)

. Since formula

(1.6) with m = 2n and k = n reads

N =
2n · (2n − 1) · (2n − 2) . . . · (n + 1)

n!
,

it is clear that all prime divisors of N are at most 2n, and so
∏

p≤2n

pe(p, N) = N.

We propose to prove that
∏

p≤n

pe(p, N) <
4n

2n
. (1.9)

Since (1.5) reads 4n/2n ≤ N, inequality (1.8) will then follow.

1.5.2 A Formula for e( p, N )

We will use the formula

e(p, N) =
∞
∑

i=1

(⌊

2n

pi

⌋

− 2

⌊

n

pi

⌋)

, (1.10)

which follows directly from (1.6) combined with Legendre’s formula. Note that

⌊2x⌋ − 2 ⌊x⌋ =

{

0 if 0 ≤ x − ⌊x⌋ < 1/2 ,

1 if 1/2 ≤ x − ⌊x⌋ < 1 ,

and so
⌊

2n

pi

⌋

− 2

⌊

n

pi

⌋

= 0 or 1 for all i. (1.11)

1.5.3 An Upper Bound on pe(p, N )

Given p and n, consider the largest integer j such that pj ≤ 2n. By (1.10) and (1.11),

we have

e(p, N) =
j

∑

i=1

(⌊

2n

pi

⌋

− 2

⌊

n

pi

⌋)

≤ j,

and so

pe(p, N) ≤ 2n. (1.12)

1.5.4 Splitting the Left-Hand Side of (1.9)

We will partition the set of all primes not exceeding n into three classes:

• the set S of primes p such that p ≤
√

2n,

• the set M of primes p such that
√

2n < p ≤ 2n/3,
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1.5 Erdős’s Proof of Bertrand’s Postulate 9

• the set L of primes p such that 2n/3 < p ≤ n.

This classification reflects the size of e(p, N): as we are about to prove,

p ∈ M ⇒ e(p, N) ≤ 1, (1.13)

p ∈ L ⇒ e(p, N) = 0. (1.14)

Our proof of these implications relies on formula (1.10): since

p >
√

2n and i ≥ 2 ⇒ 2n/pi < 1 ⇒ n/pi < 1,

we have

p >
√

2n ⇒ e(p, N) =
⌊

2n

p

⌋

− 2

⌊

n

p

⌋

. (1.15)

Implication (1.13) follows directly from (1.15) and (1.11); implication (1.14) follows

from (1.15) combined with the observation that p ∈ L implies ⌊2n/p⌋ = 2 and

⌊n/p⌋ = 1.

1.5.5 Putting the Pieces Together

By definition, we have
∏

p≤n

pe(p, N) =
∏

p∈S

pe(p, N) ·
∏

p∈M

pe(p, N) ·
∏

p∈L

pe(p, N);

by (1.12), we have
∏

p∈S

pe(p, N) ≤ (2n)
√

2n−1;

by (1.13) and by (1.7) with m = ⌊2n/3⌋, we have
∏

p∈M

pe(p, N) ≤
∏

p∈M

p ≤
∏

p≤2n/3

p < 42n/3;

by (1.14), we have
∏

p∈L

pe(p, N) = 1;

altogether, we have
∏

p≤n

pe(p, N) < (2n)
√

2n−1 · 42n/3.

N OTAT I O N : We let lg x stand for the binary logarithm log2 x.

To prove (1.9), we prove that

(2n)
√

2n−1 · 42n/3 ≤
4n

2n
,

which can be written as

(2n)
√

2n ≤ 4n/3

www.cambridge.org/9781108831833
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-83183-3 — The Discrete Mathematical Charms of Paul Erdos
Vašek Chvátal
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 A Glorious Beginning: Bertrand’s Postulate

and then (taking binary logarithms of both sides) as
√

2n lg(2n) ≤ 2n/3, and finally

as

3 lg(2n) ≤
√

2n.

A routine exercise in calculus shows that 3 lg x ≤
√

x whenever x ≥ 1024, and so

(1.9) holds whenever n ≥ 512.

To complete the proof of Bertrand’s postulate, we have to verify its validity for

the remaining 511 values of n. To do this, just observe that each interval (n, 2n] with

1 ≤ n ≤ 511 includes at least one of the primes

5, 7, 11, 19, 31, 59, 113, 223, 443, 883. (1.16)

Each prime in the sequence is less than twice its predecessor.

1.6 Proof of Bertrand’s Original Conjecture

It is a routine matter to adjust Erdős’s proof of Bertrand’s postulate so as to prove

Bertrand’s stronger original conjecture. Let us spell out the details.

T H E O R E M 1.1 For every integer n greater than 3, there is a prime p such that

n < p < 2n − 2.

Proof As in Erdős’s proof of Bertrand’s postulate, write N =
(

2n
n

)

. Since n < p <

2n implies ⌊2n/p⌋ = 1 and ⌊n/p⌋ = 0, formula (1.15) shows that

n < p ≤ 2n ⇒ e(p, N) = 1,

and so

∏

n<p<2n−2

pe(p, N) =
N

∏

p≤n pe(p, N) ·
∏

2n−2≤p≤2n pe(p, N)

≥
N

∏

p≤n pe(p, N) · (2n − 1)
;

as in Erdős’s proof of Bertrand’s postulate, we have

N
∏

p≤n pe(p, N)
>

4n/3

(2n)
√

2n
.

It follows that

∏

n<p<2n−2

pe(p, N) >
4n/3

(2n)1+
√

2n
.

A routine exercise in calculus shows that

3 lg x <
√

x − 1 <
x

1 +
√

x
whenever x ≥ 1024,
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