
Cambridge University Press & Assessment
978-1-108-83176-5 — Principles of Data Assimilation
Seon Ki Park , Milija Zupanski 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Part I

General Background

www.cambridge.org/9781108831765
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-83176-5 — Principles of Data Assimilation
Seon Ki Park , Milija Zupanski 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

www.cambridge.org/9781108831765
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-83176-5 — Principles of Data Assimilation
Seon Ki Park , Milija Zupanski 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1

Data Assimilation: General Background

1.1 Introduction

Data assimilation includes two main components: simulation model and data. The simula-
tion model is defined as a mathematical/numerical system that can simulate an event or a
process. In most typical settings the simulation model is a prediction model based on partial
differential equations (PDEs) that often includes empirical parameters. Data are generally
associated with observations made by a measuring instrument, although data could also
imply a product obtained by processing observations. Using an example from meteorology,
data include observations such as atmospheric temperature and satellite radiances. The goal
of data assimilation is to combine the information from a simulation model and data in order
to improve the knowledge of the system, described by the simulation model. Apparently,
the formulation of data assimilation will depend on interpretation of the knowledge of
the system. Before we attempt to clarify a possible interpretation, it is useful to further
understand the simulation model and data.

In agreement with common applications in geosciences and engineering, we narrow
our discussion to a dynamic-stochastic PDE-based prediction model. Prediction models
are developed with the general idea of improving the prediction of various phenomena
of interest. From the theory of PDEs it is known that various parameters can impact the
result of PDE integration, such as initial conditions (ICs), model errors (MEs), and empirical
model parameters (EMPs). It is widely recognized that our knowledge of these parameters
is never perfect, implying uncertainty of these parameters and uncertainty of the prediction
calculated using such uncertain parameters.

Since the ultimate goal of using prediction models is to produce an improved prediction,
it is natural to prefer a prediction that is in some way optimal. Such a prediction should
be reliable, implying a desire to have a very small uncertainty associated with prediction.
Then, the question is: How can the prediction be improved? First, it is anticipated that by
improving the mentioned parameters (ICs, MEs, EMPs) and reducing their uncertainty
would result in a desirable prediction. One could also try to improve model equations
by including missing physical processes, coupling relevant components, and/or improving
spatiotemporal resolution (if the prediction model is discretized). However, the only way
to improve prediction is to introduce new information about the model parameters or
model equations. The new information could come from another model with superior
performance, but the most common source of new information about the real world comes
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4 General Background

from observations. An additional source of information could be introduced from pastmodel
performances if it is believed that the prediction model has some skill. If the prediction
model has no skill, then observations are the only source of information, and one has to rely
on using purely statistical methods. If the prediction model has some skill, however, then it
is possible to combine the information from observations and from past model performances
and then rely on using data assimilation.

Note that all sources of information, from observations and from prediction models, are
uncertain. We already suggested that imperfect knowledge of model parameters (ICs, MEs,
and/or EMPs), as well as model equations, implies an imperfect prediction. Information
from observation is also not perfect. There are instrument errors, transmission errors, local
errors, as well as the so-called representativeness errors. The instrument error is associated
with every measuring instrument and can vary depending on the accuracy of the instrument.
The errors created during a transmission from observation site to central location may not
be detected in some instances and will contribute to observation error. Local errors refer to
unforeseen errors of the local observation site, such as artificial heat sources and the impact
of local vegetation. The representativeness error is the error caused by model prediction that
is not representative of the actual observation. This can refer to inadequate model resolution,
volume-averaged model variable versus point observation, etc. Therefore, observations also
have errors, i.e., uncertainties.

Given that the two main components of data assimilation, prediction model and data,
are inherently uncertain, then the output of data assimilation, the knowledge of the system,
is expected to be uncertain as well. Uncertainty can be measured in many different ways.
One can think of uncertainty as a measure of the difference between an estimate and the
truth, if the truth is known. Unfortunately, the true value of the field is rarely known, except
in a controlled experiments such as an observation system simulation experiment (OSSE).
The theory of probability offers a mathematically consistent, formal way of dealing with
uncertainties, and is used in our approach to data assimilation. A comprehensive object that
describes the probabilistic system is the probability density function (PDF). Therefore, one
can think of the PDF as the actual knowledge of the system, implying that the ultimate goal
of data assimilation is to estimate the PDF. As will be shown in Chapters 3, 7, 8, 9, and 12,
estimating the PDF is quite a challenging problem in realistic high-dimensional applications
of data assimilation, mostly limiting practical data assimilation to estimating the first PDF
moment (e.g., mean) and eventually the second PDF moment (e.g., covariance), with only
an occasional capability of estimating the higher-order PDF moments.

Another critical aspect of data assimilation is the processing of information. Both prior
model realizations and data contain information that can potentially contribute to improving
the state of knowledge. Shannon’s information theory (Shannon and Weaver, 1949), also
based on using the probabilistic approach, offers the mathematical formalism for quantify-
ing and processing information. Although still not used to its maximum, this information
theory is a very handy tool for data assimilation. Implied from the above discussion of
the impact of model parameters, such as ICs, MEs, and EMPs, on the prediction made
by the model, and the aspiration of data assimilation to improve prediction by modifying
model parameters ICs, MEs, and/or EMPs, the control theory is also an important tool of
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Data Assimilation: General Background 5

data assimilation. The implied dynamic-stochastic characterization of a prediction model
also implies the important role of statistics and possibly chaotic nonlinear dynamics in data
assimilation. Given that data assimilation is typically multivariate and applied to vectors
and matrices, it relies heavily on using linear algebra and functional analysis.

There are several other considerations that are important for data assimilation. Realistic
physical phenomena and processes, and their relation to observed variables, are all
inherently nonlinear. As such, the treatment of nonlinearity in data assimilation plays
an important role in choosing the adequate control theory methods and limiting the utility
of linear algebra. The dynamical aspect of prediction models, generally characterized by
time-dependent phenomena, implies that prediction uncertainties have to be dynamical
and time-dependent as well. Given the sensitivity of PDEs to the initial (and boundary)
conditions, data assimilation has to provide dynamically balanced ICs that would not cause
spurious perturbations in prediction. In the case of chaotic nonlinear dynamics, as most
realistic dynamical systems are, data assimilation needs to capture and eventually remove
the errors of growing and neutral modes from the ICs.

With all these components, probability theory, statistics, information theory, control
theory, linear algebra, and functional analysis, make data assimilation very complex and
challenging.

1.2 Historical Background

First attempts to address what we now call data assimilation could be traced to data
fitting and regression analysis applied in astronomy, most notably by Legendre (1805)
and Gauss (1809). In solving the problem Gauss assumed normally distributed errors and
introduced the normal probability distribution. Around that time Laplace (1814) introduced
the Bayesian approach by developing a mathematical system on inductive reasoning based
on probability. Starting with these discoveries, and after a considerable development of
mathematical tools and theories, the modern-age data assimilation was made possible.

Early methods for data assimilation were deterministic and essentially represented a
function fitting to measurements. This included the interpolation methods with distance-
based interpolation weights in order to determine the relative importance of observations,
such as the objective analysis schemes of Bergthórsson and Döös (1955), Gilchrist and
Cressman (1954), Cressman (1959), and Barnes (1964). While useful for operational
numerical weather prediction (NWP) of that time, these methods did not explicitly include
probabilistic considerations. Other deterministic methods include nudging data assimilation
(Hoke and Anthes, 1976; Davies and Turner, 1977), sometimes also referred to as four-
dimensional data assimilation (4DDA) or a dynamic relaxation method. Later developments
of the method include a generalization to accept uncertainties (e.g., Zou et al., 1992).
Nudging implies a change of the original dynamical equations of a prediction model to
include a forcing term. The coefficients associated with the forcing are generally determined
by fitting the model state closer to the observations. Although nudging has been improved
to implicitly accept uncertainties, it does not rely on using the Bayesian approach and does
not attempt to estimate PDF moments as probabilistic data assimilation does.
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6 General Background

Probably the first data assimilation method that is critically relevant for understanding
modern-age data assimilation is the Kalman filter (KF) (Kalman and Bucy, 1961), initially
developed for signal processing. It provides amathematically consistent methodology based
on probability and Bayesian principles that produces a minimum variance solution. The KF
is also helpful in describing the role of dynamics in forecast error covariance, as well in
model error covariance. Since the KF is defined for linear systems, it fully resolves the
Gaussian PDF and in that sense represents a satisfactory solution to general probabilistic
data assimilation problems. There are, however, major obstacles in making the KF a prac-
tical data assimilation method. For one, it is a linear filtering method and as such it cannot
satisfactorily address nonlinearities in the prediction model and observations. Another
major obstacle is the required matrix inversion, which becomes practically impossible to
calculate in realistic high-dimensional applications. Strictly relying on the Gaussian PDF
assumption is also a disadvantage of the KF, given that prediction model variables and
observations could have non-Gaussian errors.

The first practical method that incorporates the basic data assimilation setup with
Bayesian and probabilistic assumptions is the optimal interpolation (OI) method of Gandin
(1963), sometimes referred to as statistical interpolation. This is a minimum variance
estimator and as such it can be related to the KF and other probabilistic data assim-
ilation methods. A more detailed overview of OI can be found in Daley (1991) (see
chapters 3, 4, and 5 therein). The OI method is very much a simplified version of the
KF. The OI employs a linear observation operator, in early versions only the identity
matrix. For nonlinear observations, such as satellite radiances, an inversion algorithm
(i.e., retrieval) that produces a model variable from observations is required. The forecast
error covariance is modeled and includes separate vertical and horizontal correlations.
By construction the forecast error, covariance is homogeneous (i.e., all grid points are
treated equally) and isotropic (all directions are treated equally). In addition, the covariance
is stationary, being approximated by a correlation function with statistically estimated
correlation parameters. Since it is related to the KF, OI can also produce an estimate
of the posterior error covariance. However, such an estimate is not reliable since the
input covariances and parameters are not accurate. The OI is also local, in the sense that
only observations within a certain distance from the model point impact the analysis at
that point. Although theoretically and practically an important step in probabilistic data
assimilation development, when measured against our motivation to produce a reliable
estimate of PDFs, OI leaves much to be desired. At best it can produce a meaningful
estimate of the first PDF moment only, however with serious limitations related to preferred
capabilities such as the nonlinearity of observation operators and dynamical structure
of forecast error covariance.

Another fundamental development that led to current variational data assimilation (VAR)
methods was the introduction of variational principles in data assimilation by Sasaki (1958).
While at the time it was understood as amethod for objective analysis based on least squares,
the new method for the first time introduced variational formalism and minimization under
the geostrophic constraint and also under the more general balance constraint between
winds and geopotential. Then, in a trilogy of papers (Sasaki, 1970a, 1970b, 1970c) expanded
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Data Assimilation: General Background 7

the previous approach to include the time dependency of observations and established a
basis for future development of four-dimensional variational data assimilation (4DVAR)
methodology.

While the use of variational principles in data assimilation have been known since the
early work of Sasaki (1958), it took almost 25 years before variational methodology had
another push into the field of data assimilation, mostly because of the advancements of
computers in NWP. Addressing the deficiencies of OI, most importantly the local character
of the analysis, nonlinearity of observations, and to some extent the specification of forecast
error covariance, variational methods for data assimilation were revived in the mid 1980s
(e.g., Lewis and Derber, 1985; Le Dimet and Talagrand, 1986). The subtypes of variational
methods include three-dimensional variational (3DVAR) (e.g., Parrish and Derber, 1992)
and 4DVAR data assimilation (e.g., Navon et al., 1992; Županski, 1993; Courtier et al.,
1994). They include a global minimization (i.e., over all model points) of the cost function
that can incorporate nonlinear observations and solves the inversion problem using adjoint
equations. The forecast error covariance is improved over OI as it includes complex cross-
correlations with additional dynamical balance constraints, but the correlations are still
modeled. On the positive side, the modeling of error covariance allows the covariance to
be of full rank, meaning that all degrees of freedom (DOF) required for solving the analysis
problem are included. The covariance is stationary, although in 4DVAR there is limited
capability to introduce time dependence during the assimilation window. Also, variational
methods primarily estimate the first moment of PDFs. Although it is possible to estimate the
second PDF moment, especially in 4DVAR, there is no feedback of uncertainties from one
data assimilation cycle to the next implying a limited use of Bayesian inference. The main
advantage of variational methods is their capability to assimilate nonlinear observations,
in particular the satellite radiances that now represent the major source of information in
meteorology (e.g., Derber and Wu, 1998). By introducing 4DVAR the prediction model
itself could be used as a constraint in optimization. The cost of applying VAR has increased
compared to previous methods, but it can still be considered efficient since potentially costly
matrix inversions are avoided. The variational methods are still used in practice.

Immediately following this development of variational methods, ensemble Kalman filter-
ing (EnKF)methods have been introduced to data assimilation (Evensen, 1994; Houtekamer
and Mitchell, 1998). The EnKF successfully addressed the problem of the nonlinear predic-
tionmodel in the KF by introducing theMonte Carlo approach to the KF forecast step. At the
same time the forecast error covariance is dynamic, and is therefore an improvement on the
stationary and modeled error covariance used in variational methods. The most important
impact of the EnKF was that a realistic data assimilation could be used to produce the first
two moments of the PDF, the mean and the covariance, although still under a Gaussian PDF
assumption. One of the issues of the EnKF is not being able to account for nonlinearity
of observations, since the same linear KF analysis equation is used. More recently (e.g.,
Sakov et al., 2012), an iterative EnKF was introduced in a manner similar to the iterated
KF to address the nonlinearity of observation operators. Implementing the EnKF requires
the assimilation of perturbed observations, which results in the calculation of numerous
analyses for each ensemble member, and therefore an increase in the cost. Square-root
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8 General Background

EnKFmethods were introduced to reduce the computational cost, by directly calculating the
mean of the analysis. Including a large number of ensembles required to resolve a realistic
data assimilation problem proved to be practically impossible due to the computational
cost and storage requirements. This prompted a need for covariance localization to increase
the number of DOF of the low-rank ensemble covariance that could be feasible. This
localization greatly helped the EnKF and related ensemble methods to remain of practical
significance, although a modification of the dynamically based ensemble forecast error
covariance via convolution with a prespecified localizing covariance matrix is required.
Covariance localization implies that practical EnKF methods can be interpreted, in terms of
forecast error covariance, as an intermediate approach between the full-rank EnKF (with all
DOF) and the local OI method. The analysis solution in the EnKFwith localization is essen-
tially local since only observations within a certain distance can impact the analysis point.

Both EnKF and variational methods have practical and theoretical limitations. Variational
methods have the capability of addressing nonlinearity through applying global numerical
optimization. The EnKF is inherently designed to use the linear analysis equation of the
KF. An alternative way of bridging this issue was introduced by the maximum likelihood
ensemble filter (MLEF) (Županski, 2005), in which it was shown how the calculation of
adjoint operators could be avoided by using nonlinear ensemble perturbations and applied in
variational-like minimization of the cost function. As with other ensemble methods, MLEF
includes the flow-dependent ensemble covariance and estimates the posterior uncertainty.

The implied limitation of error covariance representation in the practical EnKF due to
an insufficient number of DOF and to some extent the nondynamical impact of covariance
localization, even though the covariance is flow dependent, can result in an analysis that
is not of the desired quality. The same could be said for variational methods, where the
use of stationary and modeled error covariance is not sufficiently realistic and can produce
unsatisfactory analysis. As a result, hybrid ensemble-variational methods that allow a
combination of the flow-dependent ensemble, but low-rank covariance, and the stationary
variational, but full-rank, error covariance were introduced (Lorenc, 2003; Buehner, 2005;
Wang et al., 2007; Bonavita et al., 2012; Clayton et al., 2013).

Data assimilation can also be viewed as an application of Pontryagin’s minimum
principle (PMP) (e.g., Pontryagin et al., 1961; Lakshmivarahan et al., 2013) where a least
squares fit of an idealized path to dynamics law follows from Hamiltonian mechanics. In
this application of optimal control theory, the problem is posed as finding the best possible
forcing for taking a dynamical system from one state to another, in the presence of dynami-
cal constraints. This forcing is also related to accounting for ME in data assimilation. While
the use of forcing reminds us of nudging, the PMP method is more general since it includes
an optimization subject to dynamical constraints as well as uncertainties (Lakshmivarahan
and Lewis, 2013). Similar to previous methods, it searches for optimal analysis that could
be interpreted as the first PDF moment, but estimation of the posterior uncertainties is not
an essential part of the method. It is possible to view 4DVAR as a special case of PMP.

The above historical overview also indicates the current status of practical data assimi-
lation development. Other methods with stronger theoretical foundations have been intro-
duced to data assimilation, such as particle filters (PFs) (e.g., van Leeuwen, 2009; Chorin
et al., 2010), but they still have limitations for realistic high-dimensional applications.
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Data Assimilation: General Background 9

However, by directly calculating arbitrary PDFs through the Bayesian framework they have
a theoretical advantage in accounting for nonlinearity and non-Gaussianity and therefore
offer numerous possibilities for the future development of data assimilation.

1.3 Terminologies and Notation

Data assimilation consists of two major elements – a model of the dynamical system and
a set of data (i.e., observations), and aims to procure optimal estimates of model states
by combining model forecasts and observations. We represent the model states and the
observations in terms of vectors, x and yo, respectively. The true state, xt , can never be
obtained but can be estimated through an adequate estimation procedure. Such an estimate,
made at a given time, is called the analysis, xa . The estimate is also denoted by x̂ and
is interchangeably used with xa . The background, xb, is an a priori estimate of xt before
the analysis is conducted. For the notations in data assimilation, we generally follow
Ide et al. (1997).

Data assimilation represents a process to obtain xa , as close to xt as possible, by
correcting xb using a correction, �x. Mathematically, it is formulated, in its simplest
form, as:

xa
= xb

+ �x. (1.1)

Note that �x is a function of both yo and xb, and it is called an analysis increment.

1.3.1 Observation Equation

A variety of observations, assembled in yo, are used for data assimilation (see Figure
1.1). As observations are much fewer than model states and are irregularly distributed,
direct comparison between observations and model states is unfeasible. Thus, we define a
nonlinear function, H , called an observation operator, that transforms the state vector from
the state space,Rm, to the observation vector in the observation space,Rn. The observation
is described in terms of the true state as:

yo
= Hxt

+ ε
o, (1.2)

where ε
o is the observation (measurement) error. Equation (1.2) is called the observation

equation or the observation model.

1.3.2 Observation Error Statistics

We assume that the measurement error ε
o in (1.2) is random and independent, and hence

have zero mean, i.e.,

mean(εo
i ) = E(εo

i ) = 0 for i = 1, . . . ,n. (1.3)

This implies that yo in (1.2) depends only on xt and all other variation in yo is random. For
the random errors, the variance and the covariance of the errors are

var(εo
i ) = E(εo

i ε
o
i ) = σ 2

i for i = 1, . . . ,n (1.4)
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10 General Background

Figure 1.1 Various observation data at the global scale, available on 0000 UTC 18 August
2020, with the observation platforms (top-right corners) and the number of data used for
data assimilation (top-left corners). The details of legends in the subfigures refer to the data
coverage from the European Centre forMedium-RangeWeather Forecasts (ECMWF, 2020).
CC BY-NC-ND 4.0 License.

and

cov(εo
i ,ε

o
j ) = E(εo

i ε
o
j ) = 0 for i,j = 1, . . . ,n and i � j, (1.5)

respectively. Here, σ 2
i is the squared standard deviation of εo

i and (1.4) assumes that
the variance of ε

o is constant; thus, not dependent on xt . With zero covariances in (1.5),
the variables in ε

o are uncorrelated with each other. By combining the three assumptions in
(1.3)–(1.5), we have

mean(εo) = E(εo) = 0,

cov(εo) = E(εo(εo)T ) = σ 2I = R. (1.6)
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