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Introduction

The purpose of this book is to introduce equivariant stable homotopy theory in a way that

will make the methods of Hill, Hopkins and Ravenel (2016) accessible to a well-informed

graduate student and facilitate further research in this area.

The research leading to Hill, Hopkins and Ravenel (2016) was an example of the apho-

rism “computation precedes theory.” In 2005, Hopkins and Ravenel set out to study the

homotopy fixed point sets of finite subgroups of the Morava stabilizer groups Sn under

their action on the Morava spectra En; Hill joined us a short time later. We knew this would

be an interesting project, but we did not anticipate that it would lead to a solution to the

Kervaire invariant problem, named after Michel Kervaire (1927–2007). We like to say we

went hiking in the Alps and found a shortcut up Mount Everest.

After making various assumptions about how things work in equivariant stable homo-

topy theory, we did the computation that led to our main theorem. Upon further reflection,

we realized that the existing literature on the subject did not provide an adequate framework

for our calculations. This led to the lengthy appendices in Hill, Hopkins and Ravenel (2016)

providing the necessary theoretical infrastructure. Despite their length, they were written

as tersely as possible so as to economize journal space.

A similar account will be given here at a more leisurely pace, with more than 150 exam-

ples illustrating various concepts. In particular, we do our best to motivate the definition of

the model structure we need on the category of equivariant orthogonal spectra, the subject

of Chapter 9.

Other works called Equivariant Stable Homotopy Theory are Greenlees and May (1995),

Lewis et al. (1986) and Segal (1971), and the phrase occurs in numerous other titles.

Nearly every item in the References can be found in the third author’s online archive:

https://people.math.rochester.edu/faculty/doug/papers.html.

There is a Table of Notations at the end of the book in Part THREE for the reader’s

convenience.

1.1 The Kervaire Invariant Theorem and the Ingredients of Its Proof

Very briefly, the Kervaire invariant problem concerns the fate of the elements h2
j in the

classical Adams spectral sequence at the prime 2, originally introduced by J. Frank Adams

FRS (1930–1989) in Adams (1958). We refer the reader to Ravenel (2004) for a description
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2 Introduction

of it. A theorem of William Browder (1969) says that h2
j is a permanent cycle if and only if

there exists a framed manifold of dimension 2j+1´2 with nontrivial Kervaire invariant. The

hypothetical element in πS
2j+1´2

represented by such a framed manifold is denoted by θj .

Here πS
k denotes the stable k-stem, the value of πn+kS

n for large n. It is also the kth

homotopy group of the sphere spectrum, which was often denoted by S0 in early works on

the subject. In this book, we will denote the sphere spectrum by S´0 to avoid confusion

with the space S0; see Remark 1.4.13.

After the publication of Browder’s theorem in 1969, there were numerous unsuccessful

attempts to prove the existence of θj for all j ą 0. Mark Mahowald (1931–2013) named

his sailboat “Thetajay.” His colleague and coauthor Michael Barratt (1927–2015) referred

to the possibility that they did not all exist as the “Doomsday Hypothesis.” More precisely,

he gave this name to conjecture, originally due to Joel Cohen (1970), that in the Adams

spectral sequence, only a finite number of elements in each filtration were permanent

cycles. The first five θj were known to exist, the construction of θ5 being the subject of

Barratt, Jones and Mahowald (1984) and recently simplified in Xu (2016).

After 1980, interest in the problem faded as the failed attempts of the 1970s convinced

the homotopy theory community that it was beyond its reach. In 2009, just before we

announced our theorem, Victor Snaith published Snaith (2009), a witty account of the state

of the art at that moment. Three of his statements are worth repeating here.

About the decline of interest in the problem, he said,

As ideas for progress on a particular mathematics problem atrophy it can disappear. Accordingly I

wrote this book to stem the tide of oblivion.

About his own involvement in it, he wrote,

For a brief period overnight we were convinced that we had the method to make all the sought after

framed manifolds – a feeling which must have been shared by many topologists working on this

problem. All in all, the temporary high of believing that one had the construction was sufficient to

maintain in me at least an enthusiastic spectator’s interest in the problem.

Best of all,

In the light of the above conjecture and the failure over fifty years to construct framed manifolds of

Arf–Kervaire invariant one this might turn out to be a book about things which do not exist. This [is]

why the quotations which preface each chapter contain a preponderance of utterances from the pen

of Lewis Carroll.

1.1A The Main Theorem

Indeed the sought after framed manifolds (with a small number of exceptions) do not exist.

The following was first announced by the second author in April 2009, in a lecture at a

conference in Edinburgh honoring the 80th birthday of Sir Michael Atiyah (1929–2019).

Main Theorem The Arf–Kervaire elements θj P πS
2j+1´2

do not exist for j ě 7.

The status of θ6 in the 126-stem remains open.
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1.1 The Kervaire Invariant Theorem 3

Figure 1.1 Fenway’s dream.

In Ravenel (1978) (see also Ravenel (2004, §6.4)) the third author showed long ago that

the cohomology of the subgroup of order p in Sp´1 could be used to show that odd primary

analogs of the Kervaire invariant elements do not exist for p ě 5.

Here Sn denotes the nth Morava stabilizer group, which plays a critical role in chromatic

homotopy theory. We refer the reader to Ravenel (2004, Chapter 6) for its definition and

properties. It is a pro-p-group that is the strict automorphism group of a height n formal

group law over a sufficiently large finite field of characteristic p. Its cohomology in some

sense controls the nth chromatic layer of the Adams–Novikov E2-term, as explained first

in Miller, Ravenel and Wilson (1977) and later in Ravenel (2004, Chapter 5). It is known

to have elements of order pi+1 precisely when (p ´ 1)pi divides n. In particular, Sp´1 has

a cyclic subgroup of order p, and for p = 2, S4 has one of order 8.

This odd primary Kervaire invariant problem was easier (and hence solved 30 years

earlier) than the 2-primary case because Hirosi Toda (1967, 1968) had shown a decade

earlier that θ2 P πS
2p2(p´1)´2

does not exist. This could be reinterpreted as a proof that

the corresponding element in the Adams–Novikov spectral sequence, βp{p, supports a

nontrivial differential hitting α1θ
p

1 = α1β
p

1 . The cohomology of Cp Ď Sp´1 then provided

a way to leverage this into a proof that θj = βpj´1{pj´1 supports a differential hitting

α1θ
p

j´1 for all j ě 2.

At the prime 2, there was no analog of Toda’s theorem; there was no θj that was known

not to exist. We also know that while the θj themselves can be detected in the cohomology

of C8 Ď S4, their products cannot be. This means that the leverage of Ravenel (1978) is

not available. The methods of Hill, Hopkins and Ravenel (2016), which include the use of

equivariant stable homotopy theory, are quite different.

We have a much simpler way of defining the action of the group C8. In chromatic

homotopy theory (for background on this topic, see Lurie’s 2010 Harvard course, Lurie
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(2010), Barthel and Beaudry (2020) with its numerous references, Ravenel (2004) and

Ravenel (1992)) we learn that Sn, the strict automorphism group of a height n formal group

law Fn over the field Fpn , acts on the ring over which its universal deformation (lifting

to characteristic zero) is defined. The same goes for Gn, the extension of Sn by the Galois

group of Fpn over Fp. This ring turns out to be π0En, where En is the nth Morava E-theory,

a variant of the Johnson–Wilson spectrum E(n). These considerations leads to an “action”

of Sn on the spectrum En, but it is only defined up to homotopy.

This awkward state of affairs was the motivating issue for the Goerss–Hopkins–Miller

theorem in the early 1990s; see Rezk (1998) and Goerss and Hopkins (2004). Morava’s

En was known to be an E8-ring spectrum, meaning that it has a multiplication that is

homotopy commutative in the strongest possible sense. They showed that for an E8-ring

spectrum R, there is a space of E8-ring automorphisms Aut(R). This required a deeper

understanding of the stable homotopy category than was prevalent at the time. In the case

of R = En, we knew that the set of path components of this space had to be Gn. They

showed that each path component is contractible.

This means that Aut(En) is homotopy equivalent to Gn and that, for any closed sub-

group G Ď Gn, one can define the homotopy fixed point spectrum EhG
n . In particular,

E
hGn
n = LK(n)S

0, the Bousfield localization of the sphere spectrum with respect to the nth

Morava K-theory. The calculation of Ravenel (1978) could be reinterpreted as a calculation

with E
hCp

p´1.

The proof of this gratifying result is quite technical. Fortunately, we do not have to deal

with it here. We have a much more direct way of mapping π˚S0 to the cohomology of a

cyclic 2-group using equivariant stable homotopy theory.

1.1B The Equivariant Approach

The starting point is the action of C2 on the complex cobordism spectrum MU via com-

plex conjugation. The resulting C2-spectrum is denoted by MUR, and known as “real

cobordism.”

This terminology derives from Atiyah’s definition of real K-theory in Atiyah (1966).

(The reader hoping for a definition of “reality” as a technical term will be disppointed

to find that the word only appears in the title of the paper.) For him, a “real” space is a

topological space X equipped with an involution τ . For x P X, he denotes τ(x) by x. A

“real” vector bundle E over a real space X was not a bundle of real vector spaces but a

complex vector bundle equipped with an involution compatible with that on X such that

the induced map from the fiber over x to that over x is conjugate linear.

A key example of a real space is the set of complex points of an algebraic variety X

defined over the real numbers, which comes equipped with an involution related to complex

conjugation. Its fixed point set is the space of real points of X. In particular, X could be the

Grassmannian variety Gn,k , whose real and complex points are respectively the spaces of

linear k-dimensional subspaces of an n-dimensional vector space over the real and complex

numbers. Taking the colimit as n and k go to infinity, we get the classifying space BU

www.cambridge.org/9781108831444
www.cambridge.org


Cambridge University Press
978-1-108-83144-4 — Equivariant Stable Homotopy Theory and the Kervaire Invariant Problem
Michael A. Hill , Michael J. Hopkins , Douglas C. Ravenel 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press
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equipped with an involution induced by complex conjugation. We denote this object by

BUR. We can Thomify this and get a C2-equivariant spectrum MUR, the real cobordism

spectrum. Its precise construction is the subject of Chapter 12. It was first studied by Peter

Landweber in Landweber (1968) and subsequently by Michikazu Fujii (1975/76), Shôrô

Araki (1930–2005) (1979) and Po Hu and Igor Kriz (2001).

The next step is to elevate the C2-spectrum MUR to a C2n-spectrum. More generally,

when H is a subgroup of G, we define a norm functor NG
H from the category of H -spectra

to that of G-spectra; see Definition 9.7.3. Roughly speaking, for an H -spectrum E, the

G-spectrum NG
H E is E^|G{H | with G permuting the H -invariant factors. A recent theorem

of Jeremy Hahn and XiaoLin Danny Shi (2017) implies that there is a map N
C2n

C2
MUR Ñ

E2n´1 that is equivariant with respect to the action of C2n as a subgroup of S2n´1 .

Classically, there is a way to derive Atiyah’s real K-theory spectrum KR from MUR,

and the former is 8-periodic, meaning that πiKR and its equivariant variants only depend

on the congruence class of i modulo 8. It is a retract of a mapping telescope obtained from

MUR by inverting a certain element in its equivariant homotopy group.

There are similar spectra KH and KO that are retracts of telescopes related to N
C4

C2
MUR

and N
C8

C2
MUR that are respectively 32- and 256-periodic. The use of the symbols H and

O here is purely a matter of convenience, as these spectra have very little to do with the

quaternions or octonions. The spectrum KH is studied extensively in Hill, Hopkins and

Ravenel (2017c), where it and KO are denoted by K[2] and K[3].

There is a similar telescope associated with N
C2n

C2
MUR for each n ě 1. It is obtained by

inverting an element D specified for the case n = 3 in Corollary 13.3.25. Theorem 13.3.23

shows that it has periodicity 2n+1+2n´1
. Passing from the telescope to its retract K[n] sim-

plifies explicit calculations of homotopy groups but is not needed for our current purposes.

1.1C The Spectrum �

The fixed point spectrum � (denoted by � in Hill, Hopkins and Ravenel, 2016) of the

telescope for N
C8

C2
MUR, which we denote by �O, is the central object in the solution to the

Kervaire invariant problem. It is a nonconnective ring spectrum with a unit map S0 Ñ �.

It has the following properties:

Key Properties of the C8 Fixed Point Spectrum �

(i) Detection Theorem. It has an Adams–Novikov spectral sequence (which is a device

for calculating homotopy groups) in which the image of each θj is nontrivial. This

means that if θj exists, we will see its image in π˚(�).

(ii) Periodicity Theorem. It is 256-periodic, meaning that πk(�) depends only on the

reduction of k modulo 256. As in the case of Bott periodicity, we have a stable equiv-

alence �256� » �.

(iii) Gap Theorem. πk(�) = 0 for ´4 ă k ă 0.
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6 Introduction

These will be proved in Chapter 13, after developing the necessary machinery in the

intervening 11 chapters. We will identify � in Definition 13.3.27. Property (iii) is our

zinger. Its proof involves a new tool we call the slice spectral sequence.

If θ7 P π254(S
0) exists, (i) implies it has a nontrivial image in π254(�). On the other

hand, (ii) and (iii) imply that π254(�) = 0, so θ7 cannot exist. The argument for θj for

larger j is similar, since |θj | = 2j+1 ´ 2 ” ´2 mod 256 for j ě 7. (Historical note: the

third author spent part of his undergraduate career living in a rented room at 254 Elm Street

near Oberlin College. It was there that he first became acquainted with homotopy theory,

but at that time, he did not appreciate the significance of his street number. In 2002, he lived

in a rented house at 62 Eden Street in Cambridge, UK.)

At the present time, the three theorems listed above are just about all we know about

�, which is just enough to prove the main theorem. If we could show that π126� = 0, we

would know that θ6 does not exist. This appears to be a daunting calculation. We computed

π˚K
C4

H in Hill, Hopkins and Ravenel (2017c) as a warm-up exercise for it.

The reader may wonder why we chose the group C8. Briefly, the argument for the

Detection Theorem, §1.1C (i), would break down were we to use C2 or C4. We will say

more about this in §13.4, specifically in Remark 13.4.18. It would go through for any larger

cyclic 2-group, but the period would be greater, which would lead to a weaker theorem.

For C16, the period is 8192, so the resulting theorem would say that θj does not exist for

j ě 12 rather than for j ě 7. The Gap Theorem holds for any cyclic 2-group.

1.2 Background and History

1.2A Pontryagin’s Early Work on Homotopy Groups of Spheres

The Arf–Kervaire invariant problem has its origins in the early work of Lev Pontrya-

gin (1908–1988) on a geometric approach to the homotopy groups of spheres (Pontrya-

gin, 1938; 1950 and 1955).

Pontryagin’s approach to maps f : Sn+k Ñ Sn is to assume that f is smooth and that

the base point y0 of the target is a regular value. (Any continuous f can be continuously

deformed to a map with this property.) This means that f ´1(y0) is a closed smooth k-

manifold M in Sn+k . Let Dn be the closure of an open ball around y0. If it is sufficiently

small, then V n+k = f ´1(Dn) Ă Sn+k is an (n + k)-manifold homeomorphic to M ˆ Dn

with boundary homeomorphic to M ˆ Sn´1. It is also a tubular neighborhood of Mk and

comes equipped with a map p : V n+k Ñ Mk sending each point to the nearest point in M .

For each x P M , p´1(x) is homeomorphic to a closed n-ball Bn. The pair (p,f |V n+k)

defines an explicit homeomorphism

V n+k
(p,f |V n+k)

≈

�� Mk ˆ Dn.

This structure on Mk is called a framing, and M is said to be framed in Rn+k . A choice

of basis of the tangent space at y0 P Sn pulls back to a set of linearly independent normal

vector fields on M Ă Rn+k . These will be indicated in Figures 1.2–1.3.
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1.2 Background and History 7

Conversely, suppose we have a closed sub-k-manifold M Ă Rn+k with a closed tubular

neighborhood V and a homeomorphism h to M ˆ Dn as above. This is called a framed

sub-k-manifold of Rn+k . Some remarks are in order here.

• The existence of a framing puts some restrictions on the topology of M . All of its

characteristic classes must vanish. In particular, it must be orientable.

• A framing can be twisted by a map g : M Ñ SO(n), where SO(n) denotes the group of

orthogonal n ˆ n matrices with determinant 1. Such matrices act on Dn in an obvious

way. The twisted framing is the composite

V
h

�� Mk ˆ Dn �� Mk ˆ Dn

(m,x)
✤ �� (m,g(m)(x)).

When Mk = Sk , this leads to the Hopf–Whitehead J -homomorphism of Remark 1.2.2.

• If we drop the assumption that M is framed, then the tubular neighborhood V is a

(possibly nontrivial) disk bundle over M . The map M Ñ y0 needs to be replaced by a

map to the classifying space for such bundles, BO(n). This leads to unoriented bordism

theory, which was analyzed by René Thom (1923–2002) in Thom (1954). Two helpful

references for this material are the books by Milnor and Stasheff (1974) and Robert Stong

(1936–2008) (Stong, 1968a).

Pontryagin constructs a map P(M,h) : Sn+k Ñ Sn as follows. We regard Sn+k as the

one-point compactification of Rn+k and Sn as the quotient Dn{BDn. This leads to the

following diagram.

(V ,BV )� �

��

h
�� M ˆ (Dn,BDn)

p2
�� (Dn,BDn)

��

(Rn+k,Rn+k ´ intV ) �� (Sn+k,Sn+k ´ intV )
P(M,h)

�� (Sn, t8u).

The map P(M,h) is the extension of p2h obtained by sending the compliment of V in Sn+k

to the point at infinity in Sn. For n ą k, the choice of the embedding (but not the choice of

framing) of M into the Euclidean space is irrelevant. Any two embeddings (with suitably

chosen framings) lead to the same map P(M,h) up to continuous deformation.

To proceed further, we need to be more precise about what we mean by continuous

deformation. Two maps f1,f2 : X Ñ Y are homotopic if there is a continuous map

h : X ˆ [0,1] Ñ Y (called a homotopy between f1 and f2) such that

h(x,0) = f1(x) and h(x,1) = f2(x).

Now suppose X = Sn+k , Y = Sn, and the map h (and hence f1 and f2) is smooth with y0

as a regular value. Then h´1(y0) is a framed (k + 1)-manifold N whose boundary is the

disjoint union of M1 = f ´1(y0) and M2 = g´1(y0). This N is called a framed cobordism

between M1 and M2, and when it exists, the two closed manifolds are said to be framed

cobordant. An example is shown in Figure 1.2.
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Pontryagin (1930s)

Framed cobordism

M1

N

M2

Figure 1.2 A framed cobordism between M1 = S1
š

S1
Ă R2 and M2 = S1

Ă R3 with N Ă

[0,1] ˆ R2. The normal framings on the circles can be chosen so they extend over N .

Let �fr

k,n denote the cobordism group of framed k-manifolds in Rn+k . The above

construction leads to Pontryagin’s isomorphism

�fr

k,n

≈
�� πn+k(S

n).

First consider the case k = 0. Here the 0-dimensional manifold M is a finite set of points

in Rn. Each comes with a framing that can be obtained from a standard one by an element

in the orthogonal group O(n). We attach a sign to each point corresponding to the sign of

the associated determinant. With these signs, we can count the points algebraically and get

an integer called the degree of f . Two framed 0-manifolds are cobordant if and only if they

have the same degree.

Now consider the case k = 1. M is a closed 1-manifold – i.e., a disjoint union of circles.

Two framings on a single circle differ by a map from S1 to the group SO(n), and it is

known that

π1(SO(n)) =

$

&

%

0 for n = 1

Z for n = 2

Z{2 for n ą 2.

It turns out that any disjoint union of framed circles is cobordant to a single framed

circle. This can be used to show that

πn+1(S
n) =

$

&

%

0 for n = 1

Z for n = 2

Z{2 for n ą 2.

The case k = 2 is more subtle. As in the 1-dimensional case, we have a complete clas-

sification of closed 2-manifolds, and it is only necessary to consider path connected ones.

The existence of a framing implies that the surface is orientable, so it is characterized by

its genus.
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Pontryagin (1930s)

k= 2

Choose an

embedded arc

Cut the surface open

and glue in disks

Pontryagin (1930s)

k= 2

Framed surgery

Figure 1.3 The case k = 2 and genus 1. If the framing on the embedded arc extends to a disk, then

there is a cobordism (called a framed surgery) that converts the torus to a 2-sphere, as shown.

If the genus is zero, namely if M = S2, then there is a framing that extends to a

3-dimensional ball. This makes M cobordant to the empty set, which means that the map is

null homotopic (or, more briefly, null), meaning that it is homotopic to a constant map. Any

two framings on S2 differ by an element in π2(SO(n)). This group is known to vanish, so

any two framings on S2 are equivalent, and the map f : Sn+2 Ñ Sn is null.

Now suppose the genus is one, as shown in Figure 1.3. Suppose we can find an embed-

ded arc as shown on which the framing extends to a disk. Then there is a cobordism that

effectively cuts along the arc and attaches two disks, as shown. This process is called framed

surgery. If we can do this, then we have converted the torus to a 2-sphere, and we have

shown that the map f : Sn+2 Ñ Sn is null.

When can we find such a closed curve in M? It must represent a generator of H1(M)

and carry a trivial framing. This leads to a map

(1.2.1) ϕ : H1(M;Z{2) Ñ Z{2,

defined as follows. Each class in H1 can be represented by a closed curve that is framed

either trivially or nontrivially. It can be shown that homologous curves have the same

framing invariant, so ϕ is well defined. At this point, Pontryagin made a famous mistake

which went undedected for over a decade: he assumed that ϕ was a homomorphism. We

now know this is not the case, and we will say more about it in §1.2C.

On that basis he argued that ϕ must have a nontrivial kernel, since the source group

is (Z{2)2. Therefore, there is a closed curve along which we can do the surgery shown

in Figure 1.3. It follows that M can be surgered into a 2-sphere, leading to the erro-

neous conclusion that πn+2(S
n) = 0 for all n. Freudenthal (1938) and later George

Whitehead (1950) both proved that it is Z{2 for n ě 2. Pontryagin corrected his mistake

in Pontryagin (1950), and in Pontryagin (1955) he gave a complete account of the relation

between framed cobordism and homotopy groups of spheres.

Remark 1.2.2 (The Hopf–Whitehead J -homomorphism) Suppose our framed mani-

fold is Sk with a framing that extends to a Dk+1. This will lead to the trivial element in

πn+k(S
n), but twisting the framing can lead to nontrivial elements. The twist is determined
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up to homotopy by an element in πk(SO(n)). Pontryagin’s construction thus leads to the

homomorphism

πk(SO(n))
J

�� πn+k(S
n),

introduced by Hopf (1935) and Whitehead (1942). Both source and target are known to be

independent of n for n ą k + 1.

In this case, the source group for each k (denoted simply by πk(SO) since n is irrelevant)

was determined by Bott (1959) in his remarkable periodicity theorem. He showed

πk(SO) =

$

&

%

Z for k ” 3 or 7 mod 8

Z{2 for k ” 0 or 1 mod 8

0 otherwise.

Here is a table showing these groups for k ď 10.

k 1 2 3 4 5 6 7 8 9 10

πk(SO) Z{2 0 Z 0 0 0 Z Z{2 Z{2 0

In each case where the group is nontrivial, the image under J of its generator is known

to generate a direct summand; see Adams (1966, Theorems 1.1, 1.3, 1.5 and 1.6). In the j th

case, we denote this image by βj and its dimension by φ(j), which is roughly 2j . (They

will figure in Hypothesis 1.2.4.) The first three of these are the Hopf maps η P πS
1 , ν P πS

3

and σ P πS
7 . After that, we have β4 P πS

8 , β5 P πS
9 , β6 P πS

11, and so on.

For the case π4m´1(SO) = Z, the image under J is known to be a cyclic group whose

order am is the denominator of Bm{4m, where Bm is the mth Bernoulli number. Details can

be found in Adams (1966, Theorems 1.5 and 1.6) and Milnor and Stasheff (1974, Appendix

B). Here is a table showing these values for m ď 8.

m 1 2 3 4 5 6 7 8

am 24 240 504 480 264 65,520 24 16,320

1.2B Our Main Result

Our main theorem can be stated in three different but equivalent ways:

• Manifold formulation: It says that a certain geometrically defined invariant �(M) (the

Arf–Kervaire invariant, to be defined later) on certain manifolds M is always zero.

• Stable homotopy theoretic formulation: It says that certain long-sought hypothetical

maps between high-dimensional spheres do not exist.

• Unstable homotopy theoretic formulation: It says something about the EHP sequence

(to be defined below), which has to do with unstable homotopy groups of spheres.
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