

An Introduction to Groups and Their Matrices for Science Students

Group theory, originating from algebraic structures in mathematics, has long been a powerful tool in many areas of physics, chemistry, and other applied sciences, but it has seldom been covered in a manner accessible to undergraduates. This book from renowned educator Robert Kolenkow introduces group theory and its applications starting with simple ideas of symmetry, through quantum numbers, and working up to particle physics. It features clear explanations, accompanying problems and exercises, and numerous worked examples from experimental research in the physical sciences. Beginning with key concepts and necessary theorems, topics are introduced systematically, including molecular vibrations and lattice symmetries; matrix mechanics; wave mechanics; rotation and quantum angular momentum; atomic structure; and finally particle physics. This comprehensive primer on group theory is ideal for advanced undergraduate topics courses, reading groups, or self-study, and it will help prepare graduate students for higher-level courses.

Robert Kolenkow was formerly Associate Professor of Physics at Massachusetts Institute of Technology and was awarded the Everett Moore Baker Award for Outstanding Teaching. He was the lead author of *Physical Geography Today* and coauthor, with Daniel Kleppner, of *An Introduction to Mechanics* (also published by Cambridge University Press).

AN INTRODUCTION TO GROUPS AND THEIR MATRICES FOR SCIENCE STUDENTS

ROBERT KOLENKOW

Formerly Massachusetts Institute of Technology

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108831086

DOI: 10.1017/9781108923217

© Robert Kolenkow 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2022

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Kolenkow, Robert J., author.

Title: An introduction to groups and their matrices for science students /

Robert Kolenkow.

Description: Cambridge; New York, NY: Cambridge University Press, 2022.

Includes bibliographical references and index. Identifiers: LCCN 2021051448 (print) | LCCN 2021051449 (ebook) | ISBN

9781108831086 (hardback) | ISBN 9781108923217 (ebook)

Subjects: LCSH: Group theory. | Matrices. | Science-Mathematics. | BISAC:

SCIENCE / Physics / Mathematical & Computational

Classification: LCC QA174.2 .K64 2022 (print) | LCC QA174.2 (ebook) | DDC

512/.2-dc23/eng/20220128

LC record available at https://lccn.loc.gov/2021051448

LC ebook record available at https://lccn.loc.gov/2021051449

ISBN 978-1-108-83108-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To Marcia my help and support

Contents

Preface				
1	Fund	lamental Concepts	1	
_	1.1	Introduction	1	
	1.2	Operations	2	
	1.3	What Is a Group?	8	
	1.4	Examples of Groups	9	
	1.5	Matrix Representations of Groups	12	
	1.6	Matrix Algebra	15	
	1.7	Special Matrices	18	
	1.8	A Brief History of Group Theory	20	
	1.9	Brief Bios	21	
	Sumn	nary of Chapter 1	21	
		ems and Exercises	22	
_				
2		ix Representations of Discrete Groups	26	
	2.1	Introduction	26	
	2.2	Basis Functions and Representations	26	
	2.3	Similarity Transformations	30	
	2.4	Equivalent Representations	31	
	2.5	Similarity Transformations and Unitary Matrices	33	
	2.6	Character and Its Invariance under Similarity Transformations	34	
	2.7	Irreducible Representations	36	
	2.8	Kronecker (Direct) Product	48	
	2.9	Kronecker Sum	51	
	Sumn	mary of Chapter 2	51	
		d Theorems in Chapter 2	52	
	Probl	ems and Exercises	53	
3	Molecular Vibrations 5			
-	3.1	Introduction	59	

Viii		Contents			
	3.2	Oscillating Systems and Newton's Laws			
	3.3	Normal Modes and Group Theory			
	3.4	Normal Modes of a Water Molecule			
	3.5	Visualizing Normal Modes			
	3.6	Infrared (IR) Spectroscopy			
	3.7	Raman Spectroscopy			
	3.8	Brief Bios			
		ary of Chapter 3			
		ms and Exercises			
4	Crysts	alline Solids 87			
•	4.1	Introduction			
	4.2	Bravais Lattices			
	4.3	X-Ray Crystallography			
	4.4	Fourier Transform			
	4.5	Reciprocal Lattice			
	4.6	Lattice Translation Group			
	4.7	Crystallographic Point Groups and Rotation Symmetry			
	4.8	Crystallographic Space Groups and the Seitz Operator 104			
	4.9	Crystal Symmetry Operations			
	4.10	Lattice Vibrations			
	4.10				
		Brief Bios			
		ary of Chapter 4			
	Proble	ms and Exercises			
5		s Quantum Theory and Matrix Mechanics 121			
	5.1	Introduction			
	5.2	Bohr's Model			
	5.3	Matrix Mechanics			
	5.4	Matrix Mechanics Quantization			
	5.5	Consequences of Matrix Mechanics			
	5.6	Heisenberg Uncertainty Relation			
	5.7	Brief Bios			
	Summ	ary of Chapter 5			
	Proble	ms and Exercises			
6	Wave Mechanics, Measurement, and Entanglement 140				
	6.1	Introduction			
	6.2	Schrödinger's Wave Mechanics			
	6.3	The Wave Equation			
	6.4	Quantization Conditions in Wave Mechanics			
	6.5	Matrix Diagonalization			
	6.6	Quantum Measurement			
	6.7	The EPR Paradox and Entanglement			

		Contents		ix
	6.8	Brief Bio		162
		Brief Bio		
		•		
	Proble	ems and Exercises	•	104
7	Rotat			168
	7.1	Introduction		
	7.2	Two Ways of Looking at Rotation		
	7.3	Rotation of a Function		
	7.4	The Axial Rotation Group		
	7.5	The $U(1)$ and $SU(2)$ Groups		176
	7.6	Pauli Matrices, SU(2), and Rotation		179
	7.7	Euler Angles		182
	7.8	Finite Rotations Don't Commute		184
	7.9	But Rotations Do Commute to First Order		185
	7.10	Brief Bios		185
	Summ	nary of Chapter 7		186
		ems and Exercises		
8	Ouan	tum Angular Momentum		189
U	8.1	Introduction		
	8.2	Stern and Gerlach: An Important Experiment (1922)		
	8.3	Rotation and Angular Momentum Operators		
	8.4	Commutation Relations		
	8.5	The Axial Rotation Group Again		
	8.6	Raising and Lowering (Ladder) Operators		
	8.7	Angular Momentum Operators and Representations of the Rotation	•	177
	0.7	Group		202
	8.8	The u_{im} Are Spherical Harmonics		
	8.9	Spin Basis Functions and Pauli Matrices		
	8.10	Coupling (Adding) Angular Momenta		
	8.11	Wigner–Eckart Theorem		
	8.12	Selection Rules		
	8.13	Brief Bios		
		nary of Chapter 8		
		ems and Exercises		
0	TIL - C	Managed 1997		226
9		Structure of Atoms		226
	9.1	Introduction		
	9.2	Zeeman: An Important Experiment (1897)		
	9.3	Quantum Theory of the Zeeman Effect		
	9.4	Fine Structure		
	9.5	Example: Intermediate Field Zeeman		
	9.6	Nuclear Spin and Hyperfine Structure		
	0.7	Multi alastron Atoms		2/12

x Contents

	9.8	The Helium Atom	
	9.9	The Structure of Multi-electron Atoms	247
		ary of Chapter 9	
	Proble	ms and Exercises	255
10	Partic	le Physics	258
	10.1	Introduction	258
	10.2	Natural Units	259
	10.3	Isospin	261
	10.4	Cross Section	265
	10.5	Antiparticles	267
	10.6	The Lagrangian	267
	10.7	Gauge Theory	270
	10.8	All Those Particles – the Particle Zoo	274
	10.9	The Quark Model	274
	10.10	Conservation Laws and Quantum Numbers	279
	10.11	Group Theory and Particle Physics	282
	10.12	Concluding Remark	287
	Summ	ary of Chapter 10	288
	Proble	ms and Exercises	290
Apj	pendix	A Character Tables from Class Sums	293
Ap	pendix	B Born-Jordan Proof of the Quantization Condition	296
Apj	pendix	C Weyl Derivation of the Heisenberg Uncertainty Principle	299
Apj	pendix	D EPR Thought Experiment	302
Apj	pendix	E Photon Correlation Experiment	304
Apj	pendix	F Tables of Some 3-j Coefficients	306
Ap	pendix	G Proof of the Wigner-Eckart Theorem	309
Ind	lex	-	312

PREFACE

This is not a math book, although a quick flip of the pages might give that impression. It is an introduction to group theory and matrix representations, a subject usually treated with mathematical rigor, theorems, and proofs. This book is intended to introduce the subject and to clear a path to more advanced treatments.

INTRODUCTION

Like typical undergraduates in science I took math courses every semester for three years, beginning with the wonders of calculus, differential equations, and advanced calculus. An elective course in linear algebra was my first contact with matrices. In graduate school I heard that group theory is a powerful tool for treating physical problems, so I took a course taught by a renowned theorist, but it was difficult for me. The term "transforms like" puzzled me – what was "transforming" and what was it "like"?

While on the physics faculty of the Massachusetts Institute of Technology I agreed to develop an elective course in group theory for juniors and seniors, having learned by then that a good way to understand a subject is to teach it. The course was popular, with 30–40 majors in physics, chemistry, and math attending.

This is the book I wish I had as a student and the book I would have wanted to teach from. A few proofs are omitted as unsuited to a text at this level, but often made plausible by examples. There are only a few uses of the crutch "it can be shown." Experimental results taken from original research papers are included to show how group theory helps us understand physical phenomena.

After studying this text, the student will be prepared to tackle more advanced texts and to understand, at least in part, research papers that employ group theory.

OVERVIEW

Most chapters end with a "Brief Bios" section to recognize the lives of experimentalists and theorists.

xii Preface

Chapter 1 Fundamental Concepts introduces the idea of symmetry by illustrations and elementary algebra of operations. The **32** group and the isomorphic permutation group illustrate the group axioms, and a matrix representation is derived using algebraic geometry. Matrix types are defined.

Chapter 2 Matrix Representations of Discrete Groups is entirely mathematical by necessity. The major concepts of basis functions, similarity transformations, character, and reducibility are defined and illustrated.

Chapter 3 Molecular Vibrations defines normal modes using Newtonian mechanics and group theory. The water molecule is taken as an example and its vibration modes are calculated and visualized in physical terms. IR active and Raman active modes are predicted from character tables.

Chapter 4 Crystalline Solids deals with ideal crystalline solids and their translation and rotation symmetries. Vibration of a 1-dimensional diatomic chain is calculated from mechanics to show the origin of branches.

Chapter 5 Bohr's Quantum Theory and Matrix Mechanics begins with a summary of Bohr's quantum theory followed by Born's recognition that Heisenberg's difference equations represent matrix algebra. The single quantization condition of matrix mechanics is based on a commutator and is applied to deriving physical principles such as conservation of energy and angular momentum. Heisenberg's uncertainty principle is made plausible by his thought experiments.

Chapter 6 Wave Mechanics, Measurement, and Entanglement Schrödinger's wave equation expresses the dispersion of matter waves. Quantization is illustrated by rotational spectra. A model 2×2 Hermitian matrix is diagonalized. Probability is challenged by the EPR thought experiment that local measurements should not produce distant results. Hidden variable theory and quantum mechanics are compared.

Chapter 7 Rotation uses algebraic geometry to develop matrices for rotation of a vector. Groups U(1) and SU(2) are defined, and SO(3) is derived from SU(2) by a similarity transformation. Euler angles are defined by sketches and matrices.

Chapter 8 Quantum Angular Momentum is a key chapter for applications of group theory. The Stern–Gerlach experiment introduces spatial quantization and angular momentum quantum numbers. Exponential operators are defined and commutators are calculated from matrices. Angular momentum labels for irreducible representations are developed. Spherical harmonics are generated using group theory. Combining quantum mechanical angular momentum is illustrated by positronium and Wigner 3-*j* coefficients are generated. Selection rules for electric dipole transitions are derived from spherical harmonics, from the Wigner–Eckart theorem, and from parity.

Chapter 9 The Structure of Atoms summarizes Zeeman's experiments and uses the Zeeman effect to motivate numerous applications including diagonalization with spin-orbit coupling in any field. Group theory applied to He derives the singlet and triplet states. The Pauli principle applied to electron configurations determines allowed states. The building-up principle and Hund's rules give a qualitative account of multi-electron atoms and the periodic table.

Preface xiii

Chapter 10 Particle Physics begins by listing the fundamental forces. SU(2) supports isospin of nucleons for strong interactions. Properties of Lagrangians are discussed. U(1) gauge invariance of Schrödinger's equation is demonstrated. The quark model is applied to hadrons. Conservation laws are applied to reactions. SU(3) is introduced and applied to the three-quark model and to color charge.

Appendix A Character Tables from Class Sums

Appendix B Born–Jordan Proof of the Quantization Condition

Appendix C Weyl Derivation of the Heisenberg Uncertainty Principle

Appendix D EPR Thought Experiment

Appendix E Photon Correlation Experiment

Appendix F Tables of Some 3-j Coefficients

Appendix G Proof of the Wigner–Eckart Theorem

TO THE INSTRUCTOR

There is more than enough material for a one-semester junior-senior course. A solid introduction to group theory and applications would include Chapters 1 Fundamental Concepts, 2 Matrix Representations of Discrete Groups, 3 Molecular Vibrations, 6 Wave Mechanics, Measurement, and Entanglement, 7 Rotation, 8 Quantum Angular Momentum, and 9 The Structure of Atoms. Chapter 10 Particle Physics would be popular with students.

Chapter 5 Bohr's Quantum Theory and Matrix Mechanics and the Sections 6.6 and 6.7 on measurement and entanglement in Chapter 6 deal with topics not commonly treated in texts at this level. The inclusion of these special topics is intended to stimulate student interest, but they could be treated as material for a short course, for a reading course, or for self-study.

