

Cambridge University Press & Assessment 978-1-108-82875-8 — Künneth Geometry Symplectic Manifolds and their Lagrangian Foliations M. J. D. Hamilton , D. Kotschick Index More Information

```
2-form
                                                        non-existence of Kiinneth structure.
  almost symplectic, 30
                                                             137-140
  fundamental, 82, 83
                                                     \mathfrak{sol}_3 \oplus \mathbb{R}
  non-degenerate, 13, 30, 36, 59, 74, 82, 107
                                                        existence of Künneth structure, 148-149
E(2n), 157
                                                     b_2^+(M), b_2^-(M), 152
E_8, 153
                                                     affinely flat
H, 153, 155
                                                        manifold, 47, 63, 118
K3 manifold, 154, 157-160
                                                        surface, 47
Nil^3, 128
                                                     almost product structure, 42, 54-56, 61, 82,
  associated nilmanifolds, 130, 132, 133
                                                           83, 108
  lattices, 128
                                                        eigenbundles, 55, 82
Nil^3 \times \mathbb{R}, 168
                                                        eigenspaces, 55, 108
  associated infra-nilmanifolds, 168, 174
                                                        integrable, 55, 84, 115
  associated nilmanifolds, 133, 158, 168, 171
                                                     annihilator, 45, 46
Nil^4, 130
  associated nilmanifolds, 130, 133, 168, 174
                                                        contact Anosov flow, 71, 72
Sol^3 \times \mathbb{R}, 168
                                                        diffeomorphism, 64
T^2-bundles over T^2, 67, 105, 157, 159,
                                                        foliation, 65
     166-176
                                                        isometry, 90
  classification, 166-175
                                                        splitting, 64
  general construction, 166-167
                                                        subbundle, 64
  principal, 133, 137, 166
                                                        symplectomorphism, 65-67, 71, 91, 105,
D, see para-complex numbers
                                                              123, 145-148
D-manifold, 70
                                                     automorphism group of (almost) Künneth
nil3, 128
                                                           structure, 57, 62, 65, 90
  cohomology, 130
                                                     bi-Hamiltonian system, 107
\mathfrak{nil}_3 \oplus \mathbb{R}
                                                     bi-Lagrangian structure, see Künneth structure
  existence of hypersymplectic structure,
                                                     bifoliation, 55-56, 70, 71, 84
        142-143
                                                        chart, 58
  existence of Künneth structure, 136-137
                                                        equidimensional, 70
nil<sub>3</sub> ⊕ nil<sub>3</sub>
                                                        with Lagrangian leaves, 58, 71, 84
  example of Anosov symplectomorphism,
        146-148
                                                        with symplectic leaves, 109
nil4
                                                     bigrading of differential forms, 57, 71, 103,
  cohomology, 130
  existence of Lagrangian foliation, 139
                                                     bipolarised symplectic manifold, 71
```


Cambridge University Press & Assessment 978-1-108-82875-8 — Künneth Geometry Symplectic Manifolds and their Lagrangian Foliations M. J. D. Hamilton , D. Kotschick Index More Information

Bockstein homomorphism, 28	curvature, 44
Bott connection	intrinsic curvature of a subbundle of tangent
for general foliation, 42, 45–46	bundle, 43
for Lagrangian foliation, 42, 46-47, 53, 56,	of Künneth connection, see Künneth
74, 81, 87	connection curvature
relation to Künneth connection, 74, 81, 87	operator, 164–165
bundle metric, 26	tensor, 85
Calabi–Yau	Darboux chart, 37, 52
neutral Calabi-Yau manifold, 118	Darboux Theorem
symplectic, see symplectic Calabi–Yau	for Künneth structures, 58, 85, 89–90
four-manifold	for Lagrangian foliations, 42, 48, 52, 58, 85,
canonical bundle, 118	90
characteristic element, 153	for Lagrangian subspaces in symplectic
Chern class, 154, 155, 157	vector spaces, 19
of compatible (almost) complex structure,	for symplectic manifolds, 37
28, 154, 159	for symplectic vector spaces, 15, 37, 59, 136
of symplectic vector bundle, 28	symplectomorphisms, 16, 48
Chern–Weil formula, 165	Dehn twist, 69
Chern-Weil integrand, 29	Dehn's Theorem, 152, 156, 160
complex structure	derived series, 124–125
almost, 35, 54, 60, 83, 109, 154, 155	Donaldson's Theorem, 155–156
(almost) complex structure compatible with	double manifold, 70
(almost) symplectic form, 21–25, 27,	double numbers, 70
35, 40, 60	Dynkin diagram, 153
(almost) complex structure tamed by	
(almost) symplectic form, 21	Ehresmann's Fibration Theorem, 131
integrable, 83, 101, 109	Einstein
on vector bundle, 25	constant, 97, 100
on vector square, 25	Künneth structure, see Künneth-Einstein
complexification of real vector bundle, 28	structure
complexified tangent bundle, 109	metric, 97
conformal symplectic couple, 110	Euler
connection (affine), 73	characteristic, 60, 98, 159-161, 165
commuting with almost product structure,	class, 29, 154, 155
55, 84	exponential map
*	of nilpotent Lie group, 127, 147
compatible with (almost) symplectic form, 52–54, 73, 76–77, 79, 86	of Riemannian metric, 37, 40
	of solvable Lie group, 148
flat, 42, 45, 47–48, 63, 87	fibre bundle, 32
integrability of Lagrangian subbundle,	flat, 44, 67
52–54, 74, 78	foliated, 44
integrability of subbundle, 51–54, 74, 78	
Levi–Civita, see Levi–Civita connection	finitely presentable group, 152, 156, 160
partial, 45, 46, 74	foliation, 42
preserving subbundle of tangent bundle,	atlas of charts, 42
51–55, 73, 76, 79, 84, 104	chart, 42, 49–51
symplectic, 52–54	codimension, 42
torsion tensor, 47, 74, 77, 79	complementary, 42–44, 55–57
torsion-free, 42, 47–48, 51–55, 63, 73, 78,	horizontal, 44
79, 88	Lagrangian, see Lagrangian foliation
connection (on a general vector bundle), 43–44	leaf, 42–44, 46
covering manifold, 159, 161	normal bundle of leaf, 44–46

Cambridge University Press & Assessment 978-1-108-82875-8 — Künneth Geometry Symplectic Manifolds and their Lagrangian Foliations M. J. D. Hamilton , D. Kotschick Index <u>More Information</u>

of irrational slope on T^2 , 43	examples on nilmanifolds, 114
on surfaces, 43	Hitchin's definition, 113–114
tubular neighbourhood of leaf, 44	holomorphic symplectic form, 111
vertical, 43, 44	integrable complex structure, 111
Freedman's Theorem, 160	Künneth–Einstein structures, 121
Frobenius Theorem, 43	Lagrangian foliations, 114-118
fundamental class, 154	neutral Calabi–Yau, 118
fundamental group	neutral pseudo-Riemannian metric, 113
of closed oriented almost Künneth	non-existence on K3, 158
four-manifolds, 156	on nilmanifolds, 123, 142–145
of closed oriented smooth four-manifolds,	Ricci-flatness, 118–121
152	symplectic foliations, 114
of nilmanifolds, 128	symplectic pairs, 111, 114, 158
	• • •
of parallelisable manifolds, 160	triple of recursion operators, 111
representation and flat fibre bundle, 44, 67	triple of symplectic forms, 111
representation and flat vector bundle, 44	infra-abelian manifold, 134
Gauss-Bonnet Theorem, 47, 165	infra-nilmanifold, 67, 133, 168
Gauss-Bonnet-Chern Theorem, 98	T^2 -bundles over T^2 , 168, 174
geometric quantisation, 71	closed flat Riemannian manifolds, 134
geometry, see Thurston geometry	finite covering by nilmanifold, 134
group of volume-preserving diffeomorphisms,	holonomy group, 134
63	injectively immersed manifold, 42
Gysin sequence, 133	intersection form, 152–154
•	definite, 155
Hasse–Minkowski classification, 153–155,	even, 153
160	indefinite, 153, 155
Hausmann–Weinberger invariant, 160	of spin 4-manifolds, 153, 155
Hermitian structure	isometry group, 62, 90, 105, 167, 168
almost, 35, 83	isotropic
Hess's Theorem on flat Künneth structures,	foliation, 58
59, 89	subbundle of tangent bundle, 59
Hirzebruch signature formula, 152, 154	submanifold, 38
Hodge star operator, 163	
holomorphic symplectic form, 107, 109–111,	subspace, 17
118	Kähler
holonomy representation	almost Kähler structure, 35, 83
of flat connection on a vector bundle, 44	flat Kähler manifold, 103–106
Hopf-Rinow Theorem, 105	form, 31
hyperbolic diffeomorphism, 64, 90	manifold, 31, 57, 71
hyperbolic Kähler structure, 70–71	potential, 59
hyperbolic numbers, 70	structure, 83, 101, 157
hyperelliptic complex surface, 171	Kähler □-structure, 70
hypersymplectic structure, 107, 111–114	Kähler-Künneth structure, 85, 101-106, 157
S ¹ -family of Künneth structures, 107,	Künneth connection, 73–84
114–118	Bianchi identity of curvature tensor, 88
canonical bundle, 118	Bott connection, 74, 81, 87
classification on compact four-manifolds,	completeness, 90, 105
114, 158	curvature, 59, 85–106
compatibility with Levi–Civita connection,	Darboux Theorem, 85, 89–90
113, 117	defining properties, 76, 79
dimension of hypersymplectic manifolds,	Einstein condition, see Künneth–Einstein
114	structure

Cambridge University Press & Assessment 978-1-108-82875-8 — Künneth Geometry Symplectic Manifolds and their Lagrangian Foliations M. J. D. Hamilton , D. Kotschick Index <u>More Information</u>

188 Index

flat, 90-91, 103-106, 157 existence problem for closed manifolds with flatness along leaves of foliations, 87, 104, non-zero Euler characteristic, 176 existence problem for nilmanifolds Levi-Civita connection of a Kähler metric, associated to Nil⁴, 176 102 integrable almost Künneth structure, 60, 69, Levi-Civita connection of associated 78-79 pseudo-Riemannian metric, 73, 79-81, linear, 27 90 mapping torus of automorphism, 66, 68 mixed curvature, 87, 92 non-integrable almost Künneth structure, 81 mixed Ricci curvature, 95, 97 obstruction from Chern classes, 28-29, mixed torsion, 74, 76-79 154-155, 157, 166 on \mathbb{R}^{2n} , 88, 92 obstruction from Euler characteristic, 60 on T^2 , 90–92 obstruction from Euler class, 29 on T^2 -bundles over T^2 , 90–91 on \mathbb{R}^{2n} , 63, 88–90, 92 on T^{2n} , 92 on T², 63, 90–92, 98 on product manifolds, 78 on T^2 -bundles over T^2 , 67, 90–91, 166–175 on T^{2n} , 63, 92 parallel transport, 89 Ricci curvature, 85, 93-97, 121 on cotangent bundles, 63-64 Ricci-flatness along leaves of foliations, 95, on four-manifolds, 151-177 97 on hypersymplectic manifolds, 107, scalar curvature, 85, 95-96 114-118 sign reversal of metric g, 80, 96 on nilmanifolds, 123, 136-142, 176 symmetries of curvature tensor, 86-88, 104 on product manifolds, 63, 78 torsion, 73, 74, 76-79, 88, 89 on surfaces, 63, 97-101 uniqueness, 76-79 on universal covering of Künneth Künneth structure, 57, 58, 73, 84 manifolds, 90 adapted orthonormal basis, 94, 96, 97, 163 on vector bundles, 13, 27-29, 59 adapted symplectic basis, 19, 23, 24, 89, 93, orientable, 28, 60, 154 95, 97, 162 orientation, 28, 29 almost, 57, 59, 73, 82-83, 154 partially integrable almost Künneth almost Künneth structure on E(2n), 157 structure, 60, 81, 87 almost Künneth structure on K3 surface, suspension construction, 66-68, 91, 105 156, 157 Künneth vector bundle, see Künneth structure almost Kiinneth structures on closed on vector bundles four-manifolds, 154-156 Künneth-Einstein structure, 85, 96-101, 121 associated almost para-Hermitian structure, de Sitter/anti-de Sitter metric on \mathbb{R}^2 , 98–101 82 - 83on $S^1 \times \mathbb{R}$, 101 associated almost product structure, 61, 82 on $T^n \times \mathbb{R}^n$, 101 associated pseudo-Riemannian metric, 61, on four-manifolds, 161-166 73, 79-82, 97 on hypersymplectic manifolds, 121 automorphism, 65, 66 on open subsets of \mathbb{R}^{2n} , 101 automorphism group, 57, 62, 65, 90 on surfaces, 97-101 canonical connection, see Künneth sign reversal of metric g, 97 Kanai connection, 84 defined by Anosov symplectomorphism, 65 Kodaira-Thurston manifold, 69 equivalence to para-Kähler structure, 70, 73, Lagrangian distribution, see Lagrangian 81.84 subbundle of tangent bundle of (almost) existence problem for K3 manifold, 157-158, 176 symplectic manifold existence problem for almost Künneth Lagrangian fibration, 39 structures, 69 Lagrangian foliation, 39, 42, 46, 52-54, 71

Cambridge University Press & Assessment 978-1-108-82875-8 — Künneth Geometry Symplectic Manifolds and their Lagrangian Foliations M. J. D. Hamilton , D. Kotschick Index <u>More Information</u>

associated to hypersymplectic structure,	ideal, 123, 124
114–118	Künneth structure, 134
complementary, see Künneth structure	Lagrangian foliation, 134
leaf, 46–48, 118	Lie subalgebra, 123, 124, 126, 134
on T^2 -bundles over T^2 , 166, 168–175	linear geometric structures, 123, 134, 148
on cotangent bundles, 48, 64	lower central series, 124-125
on surfaces, 43	nilpotent, see nilpotent Lie algebra
Weinstein's Theorem on leaves, 42, 48	solvable, see solvable Lie algebra
Lagrangian subbundle	symplectic structure, 134
compatible (almost) complex structure, 26,	Lie group
27, 40, 101	abelian, 131
complementary, 26–29	associated affine group, 133
obstruction to existence, 60	associated automorphism group, 133
of symplectic vector bundle, 13, 26-29	lattice in a simply connected Lie group, 167
of tangent bundle of (almost) symplectic	left-invariant differential forms, 129
manifold, 46, 52, 59, 60, 65	left-invariant geometric structures, 123, 134
orientation, 27, 29	nilpotent, see nilpotent Lie group
Lagrangian submanifold, 30, 38–41, 46, 48, 49	solvable, see solvable Lie group
in T^{2n} , 39	Linear Darboux Theorem, see Darboux
in cotangent bundles, 39-41, 48	Theorem for symplectic vector spaces
in product of symplectic manifolds, 38	Liouville one-form, 34–35
Neighbourhood Theorem, 39	local product structure, 58, 71
normal bundle, 40	Lorentz metric, see metric Lorentz
tangent bundle, 40	lower central series, 124–125
tubular neighbourhood, 39-41	Malcev's Theorem on lattices in simply
Lagrangian subspace, 17	connected nilpotent Lie groups, 128, 148
compatible complex structure, 22	maximally isotropic subspace, 17
complementary, 18-24	metric
extension of basis to symplectic basis, 18,	anti-de Sitter, 98–101
19	associated to (almost) Künneth structure,
Lagrangian two-web, 71	see Künneth structure associated
leaf, see foliation leaf	pseudo-Riemannian metric
Leibniz rule, 45, 74, 75	de Sitter, 98–101
Levi-Civita connection, 73, 79-81, 83-84	Einstein, 97
commuting with (almost) complex	Hermitian, 83
structure, 83, 101	Lorentz, 63, 90, 97, 99
commuting with almost product structure,	of neutral signature, 61, 82, 113
84	pseudo-Riemannian, 61, 82, 83
commuting with recursion operator, 113	Riemannian, 35, 40, 101
compatible with (almost) symplectic form,	Minkowski plane, 90
80–81, 83–84, 101, 113, 118	Moser method, 30, 35–38, 40–41, 50
preserving subbundle defined by a	Newlander-Nirenberg Theorem, 110
Lagrangian foliation, 101	nilmanifold, 69, 123, 127
symmetries of curvature tensor, 86	T^2 -bundles over T^2 , 168, 171, 174
Lie algebra, 123	Anosov symplectomorphism, 123, 145–148
abelian, 124, 125	as T^2 -bundle, 131
cohomology, 129	as mapping torus over S^1 , 131
derived series, 124–125	as principal S ¹ -bundle, 131
differential of one-forms, 129	as tower of principal S^1 -bundles, 131–133
foliation, 134	associated to two-step nilpotent Lie group,
hypersymplectic structure, 134	132

Cambridge University Press & Assessment 978-1-108-82875-8 — Künneth Geometry Symplectic Manifolds and their Lagrangian Foliations M. J. D. Hamilton , D. Kotschick Index More Information

190 Index

Betti numbers, 129 polarisation, 71 de Rham cohomology, 129 Pontryagin class, 152, 154, 155, 158 Euler characteristic, 129 primary Kodaira surface, 158 four-dimensional, 133 pseudo-Hermitian structure fundamental group, 128 almost, 83 geometric structures induced from pseudo-Riemannian metric, see metric pseudo-Riemannian left-invariant ones, 134 homogeneous space, 128 recursion operator, 107 hypersymplectic structure, 123, 142-145 composition of recursion operators, 108 Künneth structure, 123, 136-142, 176 defining an almost complex structure, 109, Lagrangian foliation, 135 parallelisable, 129 defining an almost product structure, 108, principal T^2 -bundle over T^4 , 148 111 principal T^4 -bundle over T^4 , 145 holomorphic symplectic form, 109–110 principal T^m -bundle over T^n , 132 hypersymplectic structure, 111-114 symplectic, 135 symplectic pair, 108-109 three-dimensional, 132 triple of recursion operators, 111 tori as nilmanifolds, 123, 128, 131-134 Ricci tensor, 93 nilpotent Lie algebra, 123-126 symmetry, 93 r-step, 124 Riemannian metric, see metric Riemannian Anosov automorphism, 145 scalar curvature, 95 existence of Lagrangian foliations, 135 SCY, see symplectic Calabi-Yau four-dimensional, 136-140 four-manifold rational structure constants, 128 Seiberg-Witten invariants, 151, 156, 158, 159 six-dimensional, 140-142 self-duality, 161, 163-165 symplectic form, 135 signature, 152, 158-161, 166 two-dimensional, 136 solvable Lie algebra, 123-126 two-step, 132 Lagrangian foliation, 148 nilpotent Lie group, 123, 126 solvable Lie group, 126 r-step, 126 exponential map, 148 existence of lattices, 128, 148 lattice, 148 exponential map, 127, 147 solvmanifold, 67, 148 lattice, 127, 134 example of Künneth structure in dimension logarithm map, 127 4, 148-149 simply connected, 127 spin manifold, 153, 155 universal covering Lie group, 127 Nomizu's Theorem on the cohomology of complex numbers, 70 nilmanifolds, 129, 135, 140 Kähler structure, 70-71 normal bundle, 36 quaternions, 70 Palais-Stewart Theorem on two-step nilpotent Stiefel-Whitney class, 28, 153-155, 159, 160 Lie groups, 132, 145, 148 subbundle of complex vector bundle para-complex geometry, 70, 81 totally real, 26-27, 60 para-complex numbers, 70 subbundle of tangent bundle para-Hermitian structure ∇ -parallel, *see* connection (affine) almost, 82-84 preserving subbundle of tangent bundle para-Kähler structure, 70-71, 73, 81, 84, 101 complementary, 42, 54-56, 59 equivalence to Künneth structure, 70, 73, defined by foliation, 43, 45 81,84 integrability and existence of torsion-free Poincaré coordinates, 100 affine connection, see connection Poincaré Lemma, 58, 59 (affine) integrability of subbundle

for Lagrangian foliation, 48

integrable, 42, 43, 45, 51-52, 65, 74

Cambridge University Press & Assessment 978-1-108-82875-8 — Künneth Geometry Symplectic Manifolds and their Lagrangian Foliations M. J. D. Hamilton , D. Kotschick Index More Information

Index 191

of a vector bundle (vertical and horizontal), preserved by a connection, see connection (affine) preserving subbundle of tangent bundle space of sections closed under commutator, 43, 45 symmetric bilinear form, 153 symplectic basis, 15 symplectic Calabi-Yau four-manifold, 157, 159-161 Betti numbers, 159 classification problem, 176 fundamental group, 159-161 parallelisable, 160 simply connected, 159 symplectic foliation associated to hypersymplectic structure, 114 associated to symplectic pair, 108-109, 114 symplectic form J-invariant, 21 almost 30 associated canonical orientation, 30, 60 cohomology class, 30, 36 cup product, 31 exact, 35 holomorphic, 107, 109-111, 118 of type (1, 1), 57, 70 on cotangent bundles, 34-35, 39-41, 48, 63 on Kähler manifolds, 31 on manifolds, 30 on orientable T^2 -bundles over T^2 , 166–175 on orientable T^2 -bundles over a surface, 33 on orientable surface bundles, 32-33 on orientable surface bundles over a surface. on orientable surfaces, 31 on products of symplectic manifolds, 31 on smooth projective complex-algebraic varieties, 31 on spheres, 31 on vector space, 13-25 pair of symplectic forms, 107 standard form on \mathbb{R}^{2n} , 14, 31, 37 standard form on T^{2n} , 32 triple of symplectic forms, 111 symplectic manifold, 30 Betti numbers, 31 canonical orientation, 30 symplectic submanifold, 38 volume form, 30, 162

symplectic mapping torus, 67 symplectic orientation, 16, 24, 30 symplectic pair, 107-109, 114 associated to hypersymplectic structure, 111, 114, 158 symplectic kernel foliations, 108-109, 114 symplectic vector bundle, 13, 25-27 canonical orientation, 25 symplectic vector space, 13-25, 31 canonical orientation, 16 isotropic subspace, 17 Lagrangian subspace, see Lagrangian subspace symplectic orthogonal subspace, 15, 17 symplectic subspace, 16 tautological, 19 volume form, 16 symplectomorphism between symplectic manifolds, 31, 38 between symplectic vector spaces, 16, 19 group, 63 tautological 1-form, 34 Thurston geometry, 167-168 on T^2 -bundles over T^2 , 168–175 on five-manifolds, 177 on four-manifolds, 167 Thurston's Theorem on symplectic forms on orientable surface bundles, 32 torsion tensor, 47, 74, 77, 79 tower of principal S^1 -bundles, 131 vector bundle complex, 25-27, 35 flat. 44 foliated, 44 metric, 26 symplectic, see symplectic vector bundle web geometry, 71 Weinstein's Theorem on leaves of Lagrangian foliations, 42, 48 Weinstein's Theorem on tubular neighbourhoods of Lagrangian submanifolds, 39 Wu formula, 154, 155, 166