MEDICAL STATISTICS from A to Z

MEDICAL STATISTICS from A to Z

A Guide for Clinicians and Medical Students

Third Edition

Brian S. Everitt King's College London

© in this web service Cambridge University Press

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108826464 DOI: 10.1017/9781108919739

© Brian S. Everitt 2003, 2006, 2009, 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2003 Second edition 2006 Reprinted 2009 Third edition 2021

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data
Names: Everitt, Brian, author.
Title: Medical statistics from A to Z : a guide for clinicians and medical students / Brian S. Everitt.
Description: Third edition. | Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2021. | Includes bibliographical references.
Identifiers: LCCN 2020029461 (print) | LCCN 2020029462 (ebook) | ISBN 9781108826464 (paperback) | ISBN 9781108919739 (epub)
Subjects: MESH: Statistics as Topic | Dictionary, Medical
Classification: LCC R121 (print) | LCC R121 (ebook) | NLM WA 13 | DDC 610.3-dc23 LC record available at https://lccn.loc.gov/2020029461
ICC ebook record available at https://lccn.loc.gov/2020029462
ISBN 978-1-108-82646-4 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Every effort has been made in preparing this book to provide accurate and up-to-date information that is in accord with accepted standards and practice at the time of publication. Although case histories are drawn from actual cases, every effort has been made to disguise the identities of the individuals involved. Nevertheless, the authors, editors, and publishers can make no warranties that the information contained herein is totally free from error, not least because clinical standards are constantly changing through research and regulation. The authors, editors, and publishers therefore disclaim all liability for direct or consequential damages resulting from the use of material contained in this book. Readers are strongly advised to pay careful attention to information provided by the manufacturer of any drugs or equipment that they plan to use.

To the memory of my dear friend and colleague for almost forty years, Professor Graham Dunn

Cambridge University Press 978-1-108-82646-4 — Medical Statistics from A to Z 3rd Edition Frontmatter <u>More Information</u>

Figures

1	Age-related 95% reference ranges for blood pressure in boys: systolic (solid	
	lines); diastolic (dotted lines).	p. 8
2	Angular histogram for arrival times at an intensive care unit.	12
	Time course of plasma concentration following a single oral administration	
	of a drug: illustrates area under the curve, C_{max} and T_{max} .	13
4	Levels of luteinizing hormone in blood samples taken from a healthy	
	woman every 10 minutes (a) and the autocorrelation function with	
	approximately 95% confidence limits for zero correlation (b).	17
5	Back-to-back stem and leaf plot of systolic blood pressure of 15 subjects	
	before and two hours after taking the drug captopril.	21
6	Bar chart of mortality rates per 1000 live births for children under 5 years	
	of age in five different countries.	22
7	Bathtub hazard for death in human beings.	24
	Beta distribution for a number of different sets of parameters.	27
	Bimodal probability and frequency distributions.	29
	A number of binomial distributions.	30
11	Perspective plots of four bivariate normal distributions each with zero	
	means and unit standard deviations: (a) correlation is 0.6; (b) correlation is	
	0.0; (c) correlation is 0.3; (d) correlation is 0.9.	33
12	Box-and-whisker plot of haemoglobin concentration for two groups	
	of men.	36
13	Bubble plot of haemoglobin concentration versus cell volume with radii of	
	circles proportional to white blood count.	37
14	Calendar plot of the number of tablets taken per day.	40
15	Cartogram of life expectancy in the USA by state. $LE70 = 70$ years or less,	
	GT70 = more than 70 years.	41
16	A 1996 US population cartogram (all states are resized relative to their	
	population).	42
17	Centile reference chart for birthweight for gestational age.	45
18	Chi-squared distributions for different parameter values. DF, degrees of	
	freedom.	48
19	Chronology plot of times that a tablet is taken in a clinical trial.	49
20	An example of a regression tree from applying CART procedures to	
	birthweight of babies.	50
21	Time series for daily mortality and sulphur dioxide (SO ₂) concentration in	
	London during the winter months of 1958.	56

22	Component bar chart showing subjective health assessment in four regions	
	of the United Kingdom.	60
23	Consolidated standards (CONSORT) for reporting clinical trials.	64
24	Contour plot of the natural log of the lung cancer incidence rates for	
	Connecticut women by age and period.	66
25	Perspective and contour plot for the natural log of Hodgkin's disease	
	incidence rates for Connecticut women by age and period.	66
26	Coplot of haemoglobin concentration, packed cell volume and white blood	
	cell count.	68
27	Scatter diagrams in which the two variables have different correlation	
	coefficients.	69
28	Correspondence analysis plot of hair and eye colour data.	70
29	Critical region.	72
30	Cusum chart.	76
31	Simple decision tree.	80
32	Example of a dendrogram.	81
33	Example of a difference versus total plot.	83
34	Digit preference among different groups of observers for zero, even, odd	
	and five numerals.	84
35	Standardized mortality rates from breast cancer in the departments and	
	regions of Argentina.	86
36	Dose-response relationships for lung cancer and other causes of death in	
	relation to smoking.	89
37	Dot plot of standardized mortality rates (SMR).	90
38	Epidemic curve of influenza mortality in England and Wales	
	1885–1985.	96
39	A number of exponential distributions.	101
40	Histogram and fitted two-component (normal distributions) finite-mixture	
	distributions for the age of onset of schizophrenia in men and women.	106
41	Forest plot of log-odds ratios and associated 95% confidence intervals from	
	28 case-control studies of Chlamydia trachomatis and oral	
	contraceptive use.	108
42	Frequency polygon of haemoglobin concentrations for two groups	
	of men.	110
43	(a) Funnel plot of 35 simulated studies with true effect of zero; estimated	
	effect size is 0.087 with a 95% confidence interval of $[-0.018, 0.178]$. (b)	
	Funnel plot as in (a) with the five left-most studies suppressed; estimated	
	effect size is now 0.124 with a 95% confidence interval of [0.037, 0.210].	111
44	Example of a Galbraith plot. (© Stephen Senn 2001.)	114
45	Gamma distributions for a number of parameter values.	114
46	Examples of geometric distributions.	118

viii

47	Death rates from cancer of the breast: Figure (a) includes the origin on the	
	y-axis and Figure (b) does not.	120
48	Example of a hanging rootogram.	123
49	Histogram of heights of 351 elderly women.	128
50	Examples of inverse normal distributions.	137
51	Example of an isobologram.	138
52	Example of jittering: the first scatterplot shows raw data; the second shows	
	the same data after being jittered.	141
53	Curves with differing degrees of kurtosis.	144
54	Example of a L'Abbé plot.	146
55	Lexis diagram.	150
56	Diagram with a lie factor of 2.8.	150
57	Scatter diagram of packed cell volume against haemoglobin concentration	
	showing fitted linear regression.	153
58	Time after impact and acceleration in a simulated motorcycle accident	
	showing fitted linear and locally weighted regressions.	154
59	Some log-normal distributions.	156
	Example of a Lorenz curve.	157
61	Lung ventilation/perfusion ratio for a healthy, well-perfused, well-	
	ventilated lung.	158
62	Markov illness-death model diagram.	161
	NCI State Cancer Profiles web implementation of linked micromaps with	
	added features. Data are age-adjusted rates of mortality due to any type of	
	cancer among white males, 2005. Please refer to www.cambridge.org/	
	9781108826464 for colour versions of these images.	167
64	Linked micromap plot of average annual female lung cancer mortality rates	
	plus confidence intervals in 2000-4 by state. Rate changes 1995-9 and	
	2000-4 are shown as arrows, and box plots display the distribution of	
	county rates within each state. Please refer to www.cambridge.org/	
	9781108826464 for colour versions of these images.	168
65	Probability distribution with four modes.	174
66	Examples of negative binomial distributions.	179
67	Nomogram for calculating sample size.	182
68	Normal distributions with different means and variances.	185
69	Path diagram for a correlated two-factor model.	194
70	Examples of pie charts.	197
	Examples of Poisson distributions.	200
72	Examples of population pyramids for two countries.	202
73	Examples of probability plots.	206
	Survival curves estimated by product-limit estimator for two age groups.	208
	Example of an ROC curve for the normal/diseased ratings given in	
	the text.	221

76	A rug plot of percentage body fat in a number of individuals.	229
77	Examples of scatter diagrams.	233
78	Example of scatterplot matrix.	235
79	Scree plot showing an elbow indicating three factors.	236
80	Examples of skewed distributions.	243
81	Set of snowflakes for 15 six-dimensional multivariate observations.	245
82	Stem-and-leaf diagram for the heights of 349 elderly women.	251
83	Examples of Student's t-distributions for various parameter values.	253
84	Sunflower plot for height and weight.	254
85	Time series of monthly deaths from lung cancer in the United Kingdom in	
	the period 1974–9.	261
86	Treatment allocation ratio influences the power of a study. The diagram	
	shows a reduction in power as the proportion of participants on the new	
	treatment is increased.	263
87	Example of a U-shaped distribution: the Barthel index for a sample of	
	individuals.	269
88	Venn diagram.	272

Preface to the Third Edition

In the third edition of *Medical Statistics from A to Z*, I have added nearly 150 new definitions, many describing topics that have appeared in the medical statistical literature in the last five years or so. I have also updated many references and improved (I hope) some of the definitions in the first and second editions.

Preface to the Second Edition

In the second edition of *Medical Statistics from A to Z*, I have added many new definitions and taken the opportunity to correct and clarify a number of entries. More references are also provided that point readers to more detailed accounts of topics.

Preface to the First Edition

Clinicians, research workers in the health sciences, and even medical students often encounter terms from medical statistics and related areas in their work, particularly when reading medical journals and other relevant literature. The aim of this guide is to provide such people with nontechnical definitions of many such terms. Consequently, no mathematical nomenclature or formulae are used in the definitions. Those readers interested in such material will be able to find it in one of the many standard statistical texts now available and in *The Cambridge Dictionary of Statistics*. In addition, readers seeking more information about a particular topic will hopefully find the references given with the majority of entries of some help; whenever possible, these involve medical rather than statistical journals, and introductory statistical texts rather than those that are more advanced. (References are not given for terms such as mean, variance and critical region for which further details are easily available in most introductory medical statistics texts.)

Several forms of cross-referencing are used. Terms in Courier New appear as a separate headword elsewhere in the dictionary, although this procedure is used in a relatively limited way with headwords defining frequently occurring terms such as random variable, probability and sample not referred to in this way. Some entries simply refer readers to another entry. This may indicate that the terms are

synonymous or that the term is discussed more conveniently under another entry. In the latter case, the term is printed in *italics* in the main entry. Entries are in alphabetical order using the letter-by-letter rather than the word-by-word convention.

Of the many sources of material I have consulted in the preparation of this book, I would like to mention two that have been of particular help, namely the *Encyclopedia of Biostatistics* and the *Dictionary of Epidemiology*.

REFERENCES

Armitage, P. and Colton, T., 1989, *Encyclopedia of Biostatistics*, John Wiley & Sons, Chichester. Everitt, B. S. and Skrondal, A., 2010, *The Cambridge Dictionary of Statistics*, 4th ed., Cambridge University Press, Cambridge.

Last, J. M., 2001, Dictionary of Epidemiology, 4th ed., Oxford University Press, New York.