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1

Algorithms and Inference

Statistics is the science of learning from experience, particularly experi-

ence that arrives a little bit at a time: the successes and failures of a new

experimental drug, the uncertain measurements of an asteroid’s path to-

ward Earth. It may seem surprising that any one theory can cover such an

amorphous target as “learning from experience.” In fact, there are two main

statistical theories, Bayesianism and frequentism, whose connections and

disagreements animate many of the succeeding chapters.

First, however, we want to discuss a less philosophical, more operational

division of labor that applies to both theories: between the algorithmic and

inferential aspects of statistical analysis. The distinction begins with the

most basic, and most popular, statistical method, averaging. Suppose we

have observed numbers x1; x2; : : : ; xn applying to some phenomenon of

interest, perhaps the automobile accident rates in the n D 50 states. The

mean

Nx D

nX

iD1

xi=n (1.1)

summarizes the results in a single number.

How accurate is that number? The textbook answer is given in terms of

the standard error,

bse D

"
nX

iD1

.xi � Nx/2
ı

.n.n � 1//

#1=2

: (1.2)

Here averaging (1.1) is the algorithm, while the standard error provides an

inference of the algorithm’s accuracy. It is a surprising, and crucial, aspect

of statistical theory that the same data that supplies an estimate can also

assess its accuracy.1

1 “Inference” concerns more than accuracy: speaking broadly, algorithms say what the

statistician does while inference says why he or she does it.

3
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4 Algorithms and Inference

Of course, bse (1.2) is itself an algorithm, which could be (and is) subject

to further inferential analysis concerning its accuracy. The point is that

the algorithm comes first and the inference follows at a second level of

statistical consideration. In practice this means that algorithmic invention

is a more free-wheeling and adventurous enterprise, with inference playing

catch-up as it strives to assess the accuracy, good or bad, of some hot new

algorithmic methodology.

If the inference/algorithm race is a tortoise-and-hare affair, then modern

electronic computation has bred a bionic hare. There are two effects at work

here: computer-based technology allows scientists to collect enormous data

sets, orders of magnitude larger than those that classic statistical theory

was designed to deal with; huge data demands new methodology, and the

demand is being met by a burst of innovative computer-based statistical

algorithms. When one reads of “big data” in the news, it is usually these

algorithms playing the starring roles.

Our book’s title, Computer Age Statistical Inference, emphasizes the tor-

toise’s side of the story. The past few decades have been a golden age of

statistical methodology. It hasn’t been, quite, a golden age for statistical

inference, but it has not been a dark age either. The efflorescence of am-

bitious new algorithms has forced an evolution (though not a revolution)

in inference, the theories by which statisticians choose among competing

methods. The book traces the interplay between methodology and infer-

ence as it has developed since the 1950s, the beginning of our discipline’s

computer age. As a preview, we end this chapter with two examples illus-

trating the transition from classic to computer-age practice.

1.1 A Regression Example

Figure 1.1 concerns a study of kidney function. Data points .xi ; yi / have

been observed for n D 157 healthy volunteers, with xi the i th volunteer’s

age in years, and yi a composite measure “tot” of overall function. Kid-

ney function generally declines with age, as evident in the downward scat-

ter of the points. The rate of decline is an important question in kidney

transplantation: in the past, potential donors past age 60 were prohibited,

though, given a shortage of donors, this is no longer enforced.

The solid line in Figure 1.1 is a linear regression

y D Ǒ
0 C Ǒ

1x (1.3)

fit to the data by least squares, that is by minimizing the sum of squared
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Figure 1.1 Kidney fitness tot vs age for 157 volunteers. The
line is a linear regression fit, showing ˙2 standard errors at
selected values of age.

deviations
nX

iD1

.yi � ˇ0 � ˇ1xi /
2 (1.4)

over all choices of .ˇ0; ˇ1/. The least squares algorithm, which dates back

to Gauss and Legendre in the early 1800s, gives Ǒ
0 D 2:86 and Ǒ

1 D

�0:079 as the least squares estimates. We can read off of the fitted line

an estimated value of kidney fitness for any chosen age. The top line of

Table 1.1 shows estimate 1.29 at age 20, down to �3:43 at age 80.

How accurate are these estimates? This is where inference comes in:

an extended version of formula (1.2), also going back to the 1800s, pro-

vides the standard errors, shown in line 2 of the table. The vertical bars in

Figure 1.1 are ˙ two standard errors, giving them about 95% chance of

containing the true expected value of tot at each age.

That 95% coverage depends on the validity of the linear regression model

(1.3). We might instead try a quadratic regression y D Ǒ
0 C Ǒ

1x C Ǒ
2x2,

or a cubic, etc., all of this being well within the reach of pre-computer

statistical theory.
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6 Algorithms and Inference

Table 1.1 Regression analysis of the kidney data; (1) linear regression

estimates; (2) their standard errors; (3) lowess estimates; (4) their

bootstrap standard errors.

age 20 30 40 50 60 70 80

1. linear regression 1.29 .50 �.28 �1.07 �1.86 �2.64 �3.43
2. std error .21 .15 .15 .19 .26 .34 .42

3. lowess 1.66 .65 �.59 �1.27 �1.91 �2.68 �3.50
4. bootstrap std error .71 .23 .31 .32 .37 .47 .70
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Figure 1.2 Local polynomial lowess(x,y,1/3) fit to the
kidney-fitness data, with ˙2 bootstrap standard deviations.

A modern computer-based algorithm lowess produced the somewhat

bumpy regression curve in Figure 1.2. The lowess � 2 algorithm moves�1

its attention along the x-axis, fitting local polynomial curves of differing

degrees to nearby .x; y/ points. (The 1/3 in the call3 lowess(x,y,1/3)

2 Here and throughout the book, the numbered � sign indicates a technical note or

reference element which is elaborated on at the end of the chapter.
3 Here and in all our examples we are employing the language R, itself one of the key

developments in computer-based statistical methodology.

www.cambridge.org/9781108823418
www.cambridge.org


Cambridge University Press
978-1-108-82341-8 — Computer Age Statistical Inference, Student Edition
Bradley Efron , Trevor Hastie 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 A Regression Example 7

determines the definition of local.) Repeated passes over the x-axis refine

the fit, reducing the effects of occasional anomalous points. The fitted curve

in Figure 1.2 is nearly linear at the right, but more complicated at the left

where points are more densely packed. It is flat between ages 25 and 35,

a potentially important difference from the uniform decline portrayed in

Figure 1.1.

There is no formula such as (1.2) to infer the accuracy of the lowess

curve. Instead, a computer-intensive inferential engine, the bootstrap, was

used to calculate the error bars in Figure 1.2. A bootstrap data set is pro-

duced by resampling 157 pairs .xi ; yi / from the original 157 with replace-

ment, so perhaps .x1; y1/ might show up twice in the bootstrap sample,

.x2; y2/ might be missing, .x3; y3/ present once, etc. Applying lowess

to the bootstrap sample generates a bootstrap replication of the original

calculation.
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Figure 1.3 25 bootstrap replications of lowess(x,y,1/3).

Figure 1.3 shows the first 25 (of 250) bootstrap lowess replications

bouncing around the original curve from Figure 1.2. The variability of the

replications at any one age, the bootstrap standard deviation, determined

the original curve’s accuracy. How and why the bootstrap works is dis-

cussed in Chapter 10. It has the great virtue of assessing estimation accu-
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8 Algorithms and Inference

racy for any algorithm, no matter how complicated. The price is a hundred-

or thousand-fold increase in computation, unthinkable in 1930, but routine

now.

The bottom two lines of Table 1.1 show the lowess estimates and

their standard errors. We have paid a price for the increased flexibility of

lowess, its standard errors roughly doubling those for linear regression.

1.2 Hypothesis Testing

Our second example concerns the march of methodology and inference

for hypothesis testing rather than estimation: 72 leukemia patients, 47 with

ALL (acute lymphoblastic leukemia) and 25 with AML (acute myeloid leuk-

emia, a worse prognosis) have each had genetic activity measured for a

panel of 7,128 genes. The histograms in Figure 1.4 compare the genetic

activities in the two groups for gene 136.
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Figure 1.4 Scores for gene 136, leukemia data. Top ALL
(n D 47), bottom AML (n D 25). A two-sample t -statistic D 3:01
with p-value D :0036.

The AML group appears to show greater activity, the mean values being

ALL D 0:752 and AML D 0:950: (1.5)
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1.2 Hypothesis Testing 9

Is the perceived difference genuine, or perhaps, as people like to say, “a

statistical fluke”? The classic answer to this question is via a two-sample

t -statistic,

t D
AML � ALL

bsd
; (1.6)

where bsd is an estimate of the numerator’s standard deviation.4

Dividing by bsd allows us (under Gaussian assumptions discussed in

Chapter 5) to compare the observed value of t with a standard “null” dis-

tribution, in this case a Student’s t distribution with 70 degrees of freedom.

We obtain t D 3:01 from (1.6), which would classically be considered very

strong evidence that the apparent difference (1.5) is genuine; in standard

terminology, “with two-sided significance level 0.0036.”

A small significance level (or “p-value”) is a statement of statistical sur-

prise: something very unusual has happened if in fact there is no difference

in gene 136 expression levels between ALL and AML patients. We are less

surprised by t D 3:01 if gene 136 is just one candidate out of thousands

that might have produced “interesting” results.

That is the case here. Figure 1.5 shows the histogram of the two-sample

t -statistics for the panel of 7128 genes. Now t D 3:01 looks less unusual;

400 other genes have t exceeding 3.01, about 5.6% of them.

This doesn’t mean that gene 136 is “significant at the 0.056 level.” There

are two powerful complicating factors:

1 Large numbers of candidates, 7128 here, will produce some large t -

values even if there is really no difference in genetic expression between

ALL and AML patients.

2 The histogram implies that in this study there is something wrong with

the theoretical null distribution (“Student’s t with 70 degrees of free-

dom”), the smooth curve in Figure 1.5. It is much too narrow at the cen-

ter, where presumably most of the genes are reporting non-significant

results.

We will see in Chapter 15 that a low false-discovery rate, i.e., a low

chance of crying wolf over an innocuous gene, requires t exceeding 6.16

in the ALL/AML study. Only 47 of the 7128 genes make the cut. False-

discovery-rate theory is an impressive advance in statistical inference, in-

corporating Bayesian, frequentist, and empirical Bayesian (Chapter 6) el-

4 Formally, a standard error is the standard deviation of a summary statistic, and bsd might

better be called bse, but we will follow the distinction less than punctiliously here.
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10 Algorithms and Inference
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Figure 1.5 Two-sample t -statistics for 7128 genes, leukemia
data. The smooth curve is the theoretical null density for the
t -statistic.

ements. It was a necessary advance in a scientific world where computer-

based technology routinely presents thousands of comparisons to be eval-

uated at once.

There is one more thing to say about the algorithm/inference statistical

cycle. Important new algorithms often arise outside the world of profes-

sional statisticians: neural nets, support vector machines, and boosting are

three famous examples. None of this is surprising. New sources of data,

satellite imagery for example, or medical microarrays, inspire novel meth-

odology from the observing scientists. The early literature tends toward the

enthusiastic, with claims of enormous applicability and power.

In the second phase, statisticians try to locate the new metholodogy

within the framework of statistical theory. In other words, they carry out

the statistical inference part of the cycle, placing the new methodology

within the known Bayesian and frequentist limits of performance. (Boost-

ing offers a nice example, Chapter 17.) This is a healthy chain of events,

good both for the hybrid vigor of the statistics profession and for the further

progress of algorithmic technology.
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1.3 Notes 11

1.3 Notes

Legendre published the least squares algorithm in 1805, causing Gauss

to state that he had been using the method in astronomical orbit-fitting

since 1795. Given Gauss’ astonishing production of major mathematical

advances, this says something about the importance attached to the least

squares idea. Chapter 8 includes its usual algebraic formulation, as well as

Gauss’ formula for the standard errors, line 2 of Table 1.1.

Our division between algorithms and inference brings to mind Tukey’s

exploratory/confirmatory system. However the current algorithmic world

is often bolder in its claims than the word “exploratory” implies, while to

our minds “inference” conveys something richer than mere confirmation.

�1 [p. 6] lowess was devised by William Cleveland (Cleveland, 1981) and

is available in the R statistical computing language. It is applied to the

kidney data in Efron (2004). The kidney data originated in the nephrology

laboratory of Dr. Brian Myers, Stanford University, and is available from

this book’s web site.

1.4 Exercises

1 1 Fit a cubic regression, as a function of age, to the kidney data of

Figures 1.1 and 1.2, calculating estimates and standard errors at ages

20, 30, 40, 50, 60, 70, 80.

2 How do the results compare with those in Table 1.1?

2 The lowess curve in Figure 1.2 has a flat spot between ages 25 and 35.

Discuss how one might use bootstrap replications like those in Figure 1.3

to suggest whether the flat spot is genuine or just a statistical artifact.

3 Suppose that there were no differences between AML and ALL patients

for any gene, so that t in (1.6) exactly followed a Student’s t distribution

with 70 degrees of freedom in all 7128 cases. About how big might you

expect the largest observed t -value to be? Hint: 1=7128 D 0:00014.

4 1 Perform 1000 nonparametric bootstrap replications of ALL (1.5). You

can use program bcanon from the CRAN library “bootstrap” or type

in Algorithm 10.1 on page 186.

2 Do the same for AML.

3 Plot histograms of the results, and suggest an inference.

5 Statistical methods by their nature combine information from multiple

persons or situations. A statement such as “the new treatment cured 82%

of the cases in a study of 500 patients” attempts to learn the treatment’s

efficacy from its observed performance. Suppose you were thinking of
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12 Algorithms and Inference

using this treatment. What might be arguments for and against taking

“82%” seriously?
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