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Exceptional Orthogonal Polynomials via Krall

Discrete Polynomials

Antonio J. Durán

Abstract: We consider two important extensions of the classical and

classical discrete orthogonal polynomials: namely, Krall and exceptional

polynomials. We also explore the relationship between both extensions and

how they can be used to expand the Askey tableau.

Introduction

In these lectures, we will consider two important extensions of the classical

and classical discrete orthogonal polynomials: namely, Krall and excep-

tional polynomials. On the one hand, Krall or bispectral polynomials are

orthogonal polynomials that are also common eigenfunctions of higher-

order differential or difference operators. On the other hand, exceptional

polynomials have recently appeared in connection with quantum mechan-

ical models associated to certain rational perturbations of classical poten-

tials. We also explore the relationship between both extensions and how

they can be used to expand the Askey tableau.

Section 1.1. Background on classical and classical discrete polynomials.

The explicit solution of certain mathematical models of physical interest

often depends on the use of special functions. In many cases, these spe-

cial functions turn out to be certain families of orthogonal polynomials

which, in addition, are also eigenfunctions of second-order operators of

some specific kind. We can consider these families as the workhorse of all

classical mathematical physics, ranging from potential theory, electromag-

netism, etc. through the successes of quantum mechanics in the 1920s in

the hands of Schrödinger. These families are called “classical orthogonal

polynomials”. E.J. Routh proved in 1884 (see [77]) that the only fami-

lies of orthogonal polynomials (with respect to a positive weight) that can

1

www.cambridge.org/9781108821599
www.cambridge.org


Cambridge University Press
978-1-108-82159-9 — Lectures on Orthogonal Polynomials and Special Functions
Edited by Howard S. Cohl , Mourad E. H. Ismail 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Durán: Exceptional Orthogonal Polynomials

be simultaneous eigenfunctions of a second-order differential operator are

those going with the names of Hermite, Laguerre and Jacobi. This result

is also a consequence of the Bochner classification theorem of 1929 [7].

The similar question for second-order difference operators gave rise to the

classical discrete families of orthogonal polynomials (Charlier, Meixner,

Krawtchouk, Hahn), classified by Lancaster in 1941 [61]. Finally, second-

order q-difference operators gave rise to the q-classical families of orthog-

onal polynomials (Askey–Wilson, q-Racah, etc.), although the q-families

will not be considered in these lectures.

Sections 1.2, 1.3 and 1.4. The Askey tableau. Constructing Krall and

Krall discrete orthogonal polynomials using D-operators.

Since all these families of orthogonal polynomials can be represented by

hypergeometric functions, they are also known as hypergeometric orthog-

onal polynomials, and they are organized as a hierarchy in the so-called

Askey tableau.

As an extension of the classical families, more than 75 years ago the

first families of orthogonal polynomials which are also eigenfunctions of

higher-order differential operators were discovered by H.L. Krall, who

classified orthogonal polynomials which are also eigenfunctions of differ-

ential operators of order 4. Because of that, orthogonal polynomials which

are eigenfunctions of differential or difference operators of higher order

are usually called Krall polynomials and Krall discrete polynomials, re-

spectively. Following the terminology of Duistermaat and Grünbaum (see

[11]), they are also called bispectral, and this is because of the following

reason. In the continuous parameter, they are eigenfunctions of the above-

mentioned operators, and in the discrete parameter, they are eigenfunctions

of a second-order difference operator: the three-term recurrence relation

(which is equivalent to orthogonality with respect to a measure supported

in the real line).

Since the 1980s, a lot of effort has been devoted to studying Krall poly-

nomials, with contributions by L.L. Littlejohn, A.M. Krall, J. Koekoek and

R. Koekoek. A. Grünbaum and L. Haine (and collaborators), K. H. Kwon

(and collaborators), A. Zhedanov, P. Iliev, and many others. The orthogo-

nality of all these families is with respect to particular cases of Laguerre

and Jacobi weights together with one or several Dirac deltas (and its deriva-

tives) at the end points of their interval of orthogonality.

Surprisingly enough, until very recently no example was known in the

case of difference operators, despite the problem being explicitly posed
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by Richard Askey in 1990, more than twenty five years ago. The results

known for the continuous case do not provide enough help: indeed, adding

Dirac deltas to the classical discrete weights does not seem to work. The

first examples of Krall discrete polynomials appeared three years ago in

a paper of mine, where I proposed some conjectures on how to construct

Krall discrete polynomials by multiplying the classical discrete weights by

the “annihilator polynomial” of certain finite sets of numbers. These con-

jectures have been already proved by using a new concept: D-operators.

D-operators provide a unified approach to construct Krall, Krall discrete

or q-Krall orthogonal polynomials.

This approach has also led to the discovery of new and deep symme-

tries for determinants whose entries are classical and classical discrete or-

thogonal polynomials, and has led to an unexpected connection of these

symmetries with Selberg type formulas and constant term identities.

Sections 1.5 and 1.6. Exceptional orthogonal polynomials. The dual con-

nection with Krall polynomials at the discrete level. Expanding the Askey

tableau.

Exceptional orthogonal polynomials are complete orthogonal polynomial

systems with respect to a positive measure which in addition are eigen-

functions of a second-order differential operator. They extend the classical

families of Hermite, Laguerre and Jacobi.

The most apparent difference between classical orthogonal polynomials

and exceptional orthogonal polynomials is that the exceptional families

have a finite number of gaps in their degrees. That is, not all degrees are

present in the sequence of polynomials (as it happens with the classical

families). Besides that, they form a complete orthonormal set in the under-

lying Hilbert space defined by the orthogonalizing positive measure.

This means in particular that they are not covered by the hypotheses of

Bochner’s classification theorem. Each family of exceptional polynomi-

als is associated to a quantum-mechanical potential whose spectrum and

eigenfunctions can be calculated using the exceptional family. These po-

tentials turn out to be, in each case, a rational perturbation of the classi-

cal potentials associated to the classical polynomials. Exceptional orthog-

onal polynomials have been applied to shape-invariant potentials, super-

symmetric transformations, discrete quantum mechanics, mass-dependent

potentials, and quasi-exact solvability. Exceptional polynomials appeared

some nine years ago, but there has been a remarkable activity around them

mainly by theoretical physicists (with contributions by D. Gómez-Ullate,
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N. Kamran and R.Milson, Y. Grandati, C. Quesne, S. Odake and R. Sasaki,

and many others).

In the same way, exceptional discrete orthogonal polynomials are an ex-

tension of discrete classical families such as Charlier, Meixner, Krawtchouk

and Hahn. They are complete orthogonal polynomial systems with respect

to a positive measure (but having gaps in their degrees) which in addition

are eigenfunctions of a second-order difference operator.

Taking into account these definitions, it is scarcely surprising that no

connection has been found between Krall and exceptional polynomials.

However, if one considers Krall discrete polynomials, something very ex-

citing happens: duality (roughly speaking, swapping the variable with the

index) interchanges Krall discrete and exceptional discrete polynomials.

This unexpected connection of Krall discrete and exceptional polynomi-

als allows a natural and important extension of the Askey tableau. Also,

this worthy fact can be used to solve some of the most interesting ques-

tions concerning exceptional polynomials; for instance, to find necessary

and sufficient conditions such that the associated second-order differential

operators do not have any singularity in their domain. This important issue

is very much related to the existence of an orthogonalizing measure for the

corresponding family of exceptional polynomials.

1.1 The classical and classical discrete families

1.1.1 Weights on the real line

These lectures deal with some relevant examples of orthogonal polynomi-

als. Orthogonality here is with respect to the inner product defined by a

weight in the linear space of polynomials with real coefficients (which we

will denote by R[x]).

Definition 1.1 A weight µ is a positive Borel measure with support in

the real line satisfying

(1) µ has finite moments of every order: i.e., the integrals
∫

xndµ(x) are

finite for n ∈ N := {0,1,2, . . .};

(2) µ has infinitely many points in its support (x is in the support of µ if

µ(x− ε ,x+ ε)> 0 for all ε > 0).

Condition (2) above is equivalent to saying that
∫

p2(x)dµ(x) > 0, for p ∈ R[x], p �= 0. (1.1)
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We associate to the weight µ the inner product defined in R[x] by

〈p,q〉µ =

∫

p(x)q(x)dµ(x). (1.2)

By applying the Gram–Schmidt orthogonalization process to the sequence

1,x,x2,x3, . . . (condition (1.1) is required), one can generate a sequence

(pn)n, n = 0,1,2,3, . . . , of polynomials with deg pn = n that satisfy the

orthogonality condition

∫

pn(x)pm(x)dµ(x) = cnδn,m, cn > 0.

We then say that the polynomial sequence (pn)n is orthogonal with respect

to the weight µ . When cn = 1, we say that the polynomial pn is orthonor-

mal. It is not difficult to see that the orthogonal polynomial pn is unique

up to multiplicative constants.

Except for multiplicative constants, the nth orthogonal polynomial pn
is characterized because

∫

pn(x)q(x)dµ(x) = 0 for q ∈ R[x] with degq ≤

n− 1. This is trivially equivalent to saying that
∫

pn(x)x
kdµ(x) = 0 for

0≤ k ≤ n−1.

Condition (2) above can be weakened; if we assume that the positive

measure µ has N points in its support (say, xi, 1 ≤ i ≤ N), with N < ∞,

we can only guarantee the existence of N orthogonal polynomials pn, n=

0,1, . . . ,N−1, with respect to µ . Indeed, up to multiplicative constants, the

polynomial p(x) = ∏N
i=1(x− xi) is the only one with degree N orthogonal

to pn, n= 0,1, . . . ,N−1. But the norm of p is zero.

1.1.2 The three-term recurrence relation

Orthogonality with respect to a weight can be characterized in terms of an

algebraic equation. Indeed, since xpn is a polynomial of degree n+ 1, we

can expand it in terms of the polynomials p0, p1, . . . , pn+1:

xpn(x) = an+1pn+1(x)+bnpn(x)+ cnpn−1(x)+dnpn−2(x)+ · · ·+ enp0(x).

(1.3)

Using the orthogonality of the polynomial pn to the polynomials of lower

degree, we have

dn〈pn−2(x), pn−2(x)〉µ = 〈xpn(x), pn−2(x)〉µ =
∫

R

xpn(x)pn−2(x)dµ

= 〈pn(x),xpn−2(x)〉µ = 0.
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That is dn = 0. Proceeding in a similar way, we deduce that in the expan-

sion (1.3), only the polynomials pn+1, pn and pn−1 appear:

xpn(x) = an+1pn+1(x)+bnpn(x)+ cnpn−1(x). (1.4)

It is not difficult to see that the positivity of µ implies that ancn > 0. For

the orthonormal polynomials we have the symmetry condition cn = an.

The converse of (1.4) is also true and it is the spectral theorem for or-

thogonal polynomials (it is also known as Favard’s theorem [32], although

the result seems to be known already to Stieltjes, Chebyshev, and others,

and is contained in the book by Stone [81] which appeared a couple of

years before Favard’s paper).

Theorem 1.2 If the sequence of polynomials (pn)n with deg pn = n sat-

isfies the three-term recurrence relation (1.4) with ancn > 0, then they are

orthogonal with respect to a weight.

For a proof see [3], [10] or [81].

1.1.3 The classical orthogonal polynomial families

The most important examples of orthogonal polynomials are the so-called

classical families. There are three such families (see, for instance, [10, 31,

50, 53, 67, 82], and for a good historical account see [4, 10]).

(1) The Jacobi polynomials (P
(α ,β)
n )n, α ,β >−1. They are a double para-

metric family of orthogonal polynomials with respect to the weight

dµ = (1− x)α(1+ x)βdx on the interval (−1,1). There are some rele-

vant particular values of the parameters which deserve special interest.

The simplest case is when α = β = 0 which results in Legendre poly-

nomials. Legendre introduced them at the end of the 18th century and

they are the first example of orthogonal polynomials in history (more

about that later). The cases α = β =−1/2 and α = β = 1/2 are called

Chebyshev polynomials of the first and second kind, respectively, and

they were introduced and studied by this Russian mathematician in the

second half of the 19th century. When α = β we have Gegenbauer or

ultraspherical polynomials.

(2) The Laguerre polynomials (Lα
n )n, α > −1. They are a single para-

metric family of orthogonal polynomials with respect to the weight

dµ(x) = xαe−xdx on the half line x> 0.
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(3) The Hermite polynomials (Hn)n. They are a single family of orthogo-

nal polynomials with respect to the weight dµ(x) = e−x
2

dx on the real

line.

I would like to note that, as usual in mathematics, many of the orthog-

onal families which appear in these lectures are misnamed, in the sense

that someone else introduced them earlier than the person after whom the

family is named. The classical families are related to the three most impor-

tant continuous distribution of probabilities: Beta, Gamma and Normal,

respectively. The classical families enjoy a set of important characteriza-

tion properties that we will discuss in later sections.

There are many other examples of orthogonal polynomials. For instance,

the so-called Heine polynomials, a single parametric family of orthogonal

polynomials with respect to the weight dµ(x) = [x(1− x)(a− x)]−1/2dx

on the interval (0,1) where a > 1 [10]. Of course there are sequences of

orthogonal polynomials with no name: as far as I know the orthogonal

polynomials with respect to the weight dµ(x) = |cos(x2 + 1)|dx on the

interval (0,2) have not yet been baptized. However, any careful reader

will be concerned by the previous examples because actually they are not

examples of orthogonal polynomials: they are just examples of weights!

Orthogonal polynomials can be explicitly computed only for a few

weights. Explicitly means here a closed-form expression for each of the

polynomials pn in the family. For an arbitrary weight (as the one with no

name above) one can hardly compute an approximation of the first few

orthogonal polynomials. The classical families are among those happy

cases in which we can compute everything explicitly (most of the iden-

tities we will consider next can be found in many books, see, for instance,

[10, 31, 50, 53, 67, 82]).

To start with, let us consider the Legendre polynomials (Pn)n, i.e., the

Jacobi case with α = β = 0. They are orthogonal with respect to the

Lebesgue measure on the interval [−1,1]. Here is a hint for finding ex-

plicitly the Legendre polynomials: try with the differentiation formula

Pn(x) = ((1− x)n(1+ x)n)(n). (1.5)

Trivially we get degPn = n. We then have to prove that

∫ 1

−1
Pn(x)x

kdx= 0, 0≤ k ≤ n−1.
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This can be easily proved using the following integration by parts:
∫ 1

−1
((1− x)n(1+ x)n)(n)xkdx

= ((1− x)n(1+ x)n)(n−1)xk
∣

∣

∣

1

−1
− k

∫ 1

−1
((1− x)n(1+ x)n)(n−1)xk−1dx

=−k

∫ 1

−1
((1− x)n(1+ x)n)(n−1)xk−1dx

= · · ·= (−1)kk!
∫ 1

−1
((1− x)n(1+ x)n)(n−k)dx

= (−1)kk!((1− x)n(1+ x)n)(n−1−k)
∣

∣

∣

x=1

x=−1
= 0.

Formula (1.5) is called the Rodrigues’ formula for the Legendre polynomi-

als, honoring the French mathematician Olinde Rodrigues who discovered

it at the beginning of the 19th century.

Each classical family of orthogonal polynomials has a corresponding

Rodrigues’ formula of the form

pn(x) = (an2(x)µ(x))
(n)/µ(x), (1.6)

where a2 is a polynomial of degree at most 2 and µ is the corresponding

weight function for the family. More explicitly

(1) Jacobi polynomials

P
(α ,β)
n (x) =

(−1)n

2nn!
((1− x2)n(1− x)α(1+ x)β )(n)(1− x)−α(1+ x)−β .

(2) Laguerre polynomials

Lα
n (x) =

1

n!
(xnxαe−x)(n)exx−α .

(3) Hermite polynomials

Hn(x) = (−1)n(e−x
2

)(n)ex
2

.

One of the characteristic properties of the classical families is precisely this

kind of Rodrigues’ formula. These Rodrigues’ formulas allow an explicit

computation for each family. For instance, one get for the Legendre and

Laguerre polynomials, respectively

Pn(x) =
1

2n

[n/2]

∑
k=0

(−1)k
(

n

k

)(

2n−2k

n

)

xn−2k,

Lα
n (x) =

n

∑
k=0

(

n+α

n− k

)

(−x)k

k!
. (1.7)
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Figure 1.1 The first few Legendre polynomials

Exercise 1.3 Prove the explicit expression for the Laguerre polynomials.

Using the explicit formulas for the Legendre polynomials one can draw

the first few of them, as shown in Figure 1.1.

One can then check that each one of these first few Legendre polyno-

mials has real and simple zeros which live in the interval of orthogonality

(−1,1). Actually this is a general property of the zeros of orthogonal poly-

nomials.

Theorem 1.4 The zeros of an orthogonal polynomial pn with respect to

a weight µ are real, simple and live in the convex hull of the support of µ .

Exercise 1.5 Prove this theorem.

Hint: let x1, . . . ,xm be the real zeros of pn with odd multiplicity. Consider

then the polynomial q(x) = (x− x1) · · · (x− xm). Show that pn(x)q(x) has

constant sign in R. Use that fact and the orthogonality of pn to conclude

that m≥ n.

Rodrigues’ formulas can also be used to explicitly compute the three-

term recurrence relation (1.4). That is the case for the Hermite polynomi-

als:

Hn+1(x) = (−1)n+1(e−x
2

)(n+1)ex
2

= (−1)n+1(−2xe−x
2

)(n)ex
2

= (−1)n+1
(

−2x(e−x
2

)(n)−2n(e−x
2

)(n−1)
)

ex
2

= 2xHn(x)−2nHn−1(x).

The three-term recurrence relation for Laguerre and Jacobi polynomials
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are, respectively

Lα
n+1(x) =

1

n+1

(

(2n+1+α − x)Lα
n (x)− (n+α)Lα

n−1(x)
)

,

2(n+1)(n+α +β +1)(2n+α +β )P
(α ,β)
n+1 (x)

=−2(n+α)(n+β )(2n+α +β +2)P
(α ,β)
n−1 (x)

+ (2n+α +β +1)
[

(α2−β 2)

+ (2n+α +β )(2n+α +β +2)x
]

P
(α ,β)
n (x).

1.1.4 Second-order differential operator

Legendre polynomials appeared in the context of planetary motion. Indeed,

Legendre studied the following potential function related to planetary mo-

tion

V (t,y,z) =

∫ ∫ ∫

ρ(u,v,w)

r
dudvdw,

where r =
√

(t−u)2+(y− v)2+(z−w)2, and ρ(u,v,w) stands for the

density at the point (u,v,w) (Cartesian coordinates). This integral is easier

after performing the change of variable

r(ρ ,x) = (1−2ρx+ρ2)1/2, x= cosγ .

Legendre then expanded 1/r(ρ ,x) in power series of ρ

1

(1−2ρx+ρ2)1/2
=

∞

∑
n=0

ρnPn(x), (1.8)

and he realized that the functions Pn(x) are actually polynomials in x of

degree n: they are the polynomials we now call Legendre polynomials.

The function in the left-hand side of identity (1.8) is called the gener-

ating function for the Legendre polynomials. The generating function was

an invention of the Swiss mathematician Leonard Euler: his genius idea

was to pack a sequence (an)n in an analytic function f ,

f (z) =
∞

∑
n=0

anz
n,

so that one can find interesting properties of the sequence (an)n from the

function f , as long as one can explicitly find the function f . As the identity

(1.8) shows, that is the case of the Legendre polynomials. A very interest-

ing property one can deduce for the Legendre polynomials from its gen-

erating function is that they satisfy a second-order differential equation.
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