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Preface

In 1845 Edgar Allan Poe published a story titled “The Purloined Letter,” in which

a protagonist, Mr. C. Auguste Dupin, says the following:

The mathematics are the science of form and quantity; mathematical reasoning is

merely logic applied to observation upon form and quantity. The great error lies

in supposing that even the truths of what is called pure algebra, are abstract or

general truths. And this error is so egregious that I am confounded at the universality

with which it has been received. Mathematical axioms are not axioms of general

truth. What is true of relation — of form and quantity — is often grossly false in

regard to morals, for example. In this latter science it is very usually untrue that the

aggregated parts are equal to the whole. [. . . ] two motives, each of a given value,

have not, necessarily, a value when united, equal to the sum of their values apart.

There are numerous other mathematical truths which are only truths within the limits

of relation. But the mathematician argues, from his finite truths, through habit, as

if they were of an absolutely general applicability — as the world indeed imagines

them to be.

A safe reaction to this excerpt (especially in view of Mr. Dupin’s subsequent

remarks, omitted here) is that Mr. Dupin has a hopelessly approximate notion

of mathematics. However, his appellation to morals and motives provides an

opportunity for a more generous reaction, making Mr. Dupin’s tirade relevant to a

discussion of mathematical psychology. One could interpret this tirade as stating

that

D1 given two motives or moral ideas A and B that are combined in some well-

defined sense (e.g., co-occur chronologically),

D2 and assuming that each of them can be assigned a value represented by a real

number, a and b,

D3 and assuming that the combination of A and B can also be assigned a value c

that is a real number,

D4 and assuming that the combination of A and B is represented by the sum of

their individual values, a + b,

D5 we observe empirically that the value c is not generally equal to a + b;

D6 the contradiction between D4 and D5 shows that the laws of arithmetic do not

apply to motives and moral ideas.

vii
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viii Preface

Of course, the assumptions D1–D4 are hidden, they are not explicated by Mr.

Dupin. Nor would he stop to think about how he could know the truth of D5. Deny

any of the assumptions D1–D5, and Mr. Dupin will lose any grounds to blame

mathematics. For instance, if the assumption D4 is not made, then c does not have

to be equal to a + b, it can instead be ab or max (a,b), or perhaps a and b alone

do not determine c at all. Mathematics is perfectly fine with these possibilities.

Mathematics is also fine with the possibility that the assumptions D2 and D3 are

wrong, and the motives or moral ideas are not representable by anything that can

be subjected to conventional addition. Perhaps a and b are dimensioned numbers,

but their dimensionality is not the same (say, they are measured in “love units” and

“revenge units,” respectively).

Is there any useful lesson that can be derived from this admittedly too easy

critique of Mr. Dupin’s perorations? We think there is. The lesson is that

mathematics in psychology (or chemistry, or wherever else it is applied) is not

about adding, multiplying, or, generally, computing. It is primarily about striving

for conceptual clarity and avoiding conceptual confusions. Before we can compute,

we need to explicate the hidden assumptions we make, and often when we do this

we find out these assumptions are not all that compelling.

Take as an example the following piece of reasoning one can encounter in the

modern literature. In logic, the conjunction of two statements is commutative, A&B

is the same as B&A. However, we have empirical evidence that the chronological

order in which two statements are presented or evaluated does matter for one’s

judgment of the truth value (or probability) of their conjunction. Ergo, classical

logic (probability theory) is not applicable to human judgments. Let us see what is

involved in this reasoning.

L1 Assuming that if A is presented first and B is presented second, then their

combination is represented by A&B,

L2 whence, by symmetry, if A is presented second and B is presented first, their

combination is represented by B&A;

L3 and knowing from classical logic that A&B and B&A are equivalent,

L4 their truth value (or probability) M should be the same, M (A&B) = M (B&A).

L5 But empirical observations tell us this is not generally the case.

L6 Ergo, classical logic (classical probability) here does not work.

The reasoning here is definitely “Dupinesque.” Far from not being applicable,

formal logic, if applied correctly, would lead one to reject, by reductio ad

absurdum, the assumptions L1 and L2. Indeed, L3 and the implication L3³L4 are

unassailable, and we assume L5 truthfully describes empirical facts. The ways to

constructively deny L1 and L2 readily suggest themselves. One way is to introduce

a special, noncommutative operation A then B. Another way is to identify the

statements not only by their content but also by their chronological position in

the pair: a statement with content A, if presented first, is A1, when presented

second it is A2. So the rejected representations A&B and B&A in L1 and L2 are in

reality A1&B2 and A2&B1, respectively. The commutativity of the conjunction is
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Preface ix

perfectly preserved, e.g., A1&B2 c B2&A1. But A1&B2 and A2&B1 are different

propositions, and one should generally expect that

M (A1&B2) "= M (A2&B1) ,

whatever M may be. One can further investigate which of the two solutions, the

introduction of A then B or the positional labeling, is preferable. Thus, if the truth

values of the statements A and B themselves, and not just of their conjunction,

depends on their chronological position, then the positional labeling clearly wins.

The quest for conceptual clarity and explication of hidden assumptions often

faces greater and subtler difficulties than in the examples above. The greater then

are the rewards ensuing from resolving these difficulties. Take as an illustration the

question of whether the ways we measure certain quantities constrain the way these

quantities can be related to each other. The historical context for this question is the

emergence in mathematical psychology in the second half of the twentieth century

of the line of research referred to as representational theory of measurement. It is

an unusual theory, in the sense that while it is a firmly established branch or part

of mathematical psychology, its aim is to formalize all empirical measurements,

across sciences, and even provide necessary conditions for all possible scientific

laws and regularities.

One of the tenets of this theory, widely accepted in modern psychology (and

in textbooks of elementary statistics), is that all entities we deal with, physical

or mental, are measured on specific scales, such as ordinal, interval, or ratio

scales. We need not get here into the details of the qualitative, or pre-numerical,

symmetries (automorphisms) postulated for the entities being measured. Suffice it

to mention that the scale type assigned to these entities is characterized by the class

(usually, a parametric group) of interchangeable mathematical representations, i.e.,

measurement functions, mapping the entities being measured into mathematical

objects, usually real numbers. Thus, if entities x * X , say, stimulus intensity or

sensation magnitude values, are said to be measured on a ratio scale, it means that

the measurement functions for X map this set into intervals of real numbers, and

that if f and g are such measurement functions, then, for every x * X ,

f (x) = kg (x) ,

for some positive constant k. R. Duncan Luce, arguably one of the two greatest

mathematical psychologists of the twentieth century (along with William K. Estes),

made use of the notion of a measurement scale to restrict theoretically the class

of possible psychophysical functions, those relating the magnitude of stimulus to

the magnitude of sensation it causes. Luce proposed this idea in a book entitled

Individual choice behavior (Luce, 1959a) and in a journal article (Luce, 1959b).

The idea is so attractive aesthetically that it deserves being reproduced here,

mutatis mutandis.

Let x = f (x) and s = ϕ (s) represent measurement functions for the

stimulus magnitude x and sensation magnitude s, respectively, and let the
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x Preface

psychophysical function relating s to x, written in terms of these specific

measurement functions, be

s = ψ (x) .

Assume that both x and s are of the ratio-scale type. Consider another admissible

measurement function for x:

x� = kf (x) ,

for some k > 0. Then, Luce hypothesized, if one switches from x to x�, the

psychophysical function should be presentable as

s� = ψ
�

x�
�

,

where

s� = cϕ (s) ,

for some c > 0. That is, s� is another admissible measurement function for s.

Put differently, the function ψ is invariant with respect to admissible changes of

the measurement function for x, provided that the measurement function for the

dependent variable s can also change to other measurement functions accordingly.

The last word, “accordingly,” means that the choice of the measurement function

for s generally depends on the choice of the measurement function for x, i.e.,

c = K (k) ,

for some function K.

The reasoning here is seductively plausible, and Luce thought that examples of

the well-established laws of physics confirmed its validity. Thus, Newton’s law of

gravitation is conventionally written as

F = γ
m1m2

r2
.

If we assume that everything on the right-hand side is fixed except for the distance

measurement function r, then augmenting this measurement function by the factor

of k = 10 would result in the same expression, except that the measurement

function F for force will have to be multiplied by c = k22 = 1/100.

Having accepted Luce’s hypothesis (Luce called it a “principle of theory

construction”), we are led to a surprising conclusion: the psychophysical function

cannot be anything but a power function. What is surprising here is that this

conclusion is based on no empirical evidence, it is obtained deductively, by merely

assuming that the magnitudes of stimulus and sensation are of the ratio-scale type.

Indeed, the reasoning above translates into

ψ (kx) = ψ
�

x�
�

= s� = cs = cψ (x) = K (k) ψ (x) ,

whence, by eliminating all but the marginal terms, we get the functional equation

ψ (kx) = K (k) ψ (x) .
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Preface xi

Here, the values of x and k are positive, and the functions ψ and K are positive and

increasing. Since the functional equation holds for all positive k and all x on some

interval of positive reals, its only solution is known to be (Aczel, 1987)

ψ (x) = bxβ,K (k) = kβ,

for some positive b and β.

It looks like we have here an immaculate piece of deductive reasoning, with all

concepts rigorously defined and all assumptions explicated. However, what shall

we do with the fact that psychophysical laws of other forms have been proposed

too? Most notably, every psychologist knows of the logarithmic law proposed by

Gustav Theodor Fechner in 1861:

s = s0 log
x

x0
.

Here, x0 is the numerical representation of the absolute threshold magnitude

x0, one at which the numerical representation of s is zero, for all measurement

functions.

We can see that Fechner’s law does not violate any of Luce’s assumptions. Since

x and x0 are measured by the same measurement function, the value of

f (x)

f (x0)
=

kx

kx0

is the same for all admissible f . The magnitude of the absolute lower threshold is

defined irrespective of the measurement function chosen for x, because so is

defined s = 0. Even if one denies the existence of absolute threshold as a

fixed constant, such operational definitions of x0 as “the value of x detected

with probability p” are independent of the measurement function for x. The

measurement function for the dependent variable s is chosen independently, which

formally translates into K (k) = 1. The value s0 is the numerical representation of

the value of s corresponding to the value of x at which log x
x0

= 1.

Since the logarithmic law is not the same as the power law, Luce must have made

a hidden assumption that Fechner’s derivation of his law violates. This hidden

assumption is not difficult to detect. It is the assumption that the dependence of s

on x * X contains no parameters (constants with respect to x) that belong to the

same set X and are therefore represented by the same measurement function. Such

parameters are called measurement-dependent constants, or dimensional constants

in the case of ratio scales. An expression

s = s0ψ

�

x

x0

�

,

with dimensional constants x0 and s0, can hold for any positive increasing function

ψ . Using examples of physical laws, this was pointed out to Duncan Luce by

William W. Rozeboom in a 1962 article (Rozeboom, 1962). Being a true scientist,

Luce accepted this criticism and withdrew his “principle of theory construction”

(Luce, 1962). Interestingly, in the formulation of this principle, Luce did in fact
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xii Preface

mention dimensional constants: the form of the dependence ψ should be invariant,

he wrote, “except for the numerical values of parameters that reflect the effect

on the dependent variables of admissible transformations of the independent

variables.” This is precisely what dimensional constants are. Using Luce’s own

example of the universal gravitation law, in the formula

F = γ
m1m2

r2
,

if one uses the distance–time–mass–force system of units, changing the dimen-

sionality of mass or distance in no way leads to the change of the dimensionality

of force. Rather, the dimensional constant γ , whose dimensionality is

force · distance2 · mass22,

changes its numerical value. In essence, γ is a coalesced form (using the expression

coined by Percy Williams Bridgman) of the “individual” dimensional constants in

the formula

F

F0
=

m1
m0

m2
m0

�

r
r0

�2
.

The lesson we learn from the story of Duncan Luce’s “principle of theory

construction” is that hidden assumptions and lack of conceptual clarity due to the

failure to explicate them can be present even in very rigorous treatments. Moreover,

explication of these hidden assumptions, while resolving the issue at hand, leads

to new conceptual problems and opens new avenues of conceptual research. In our

example the new conceptual problems can be formulated thus:

P1 What is the nature of dimensional (more generally, measurement-

dependent) constants in empirical laws? Where do they come from?

P2 How do we know the scale type (the group of admissible measurement

functions) of a given entity? Is it imposed on the entity by the human

mind, or is it objectively present in it, to be uncovered?

These questions are at the foundations of all empirical science, and it is an

interesting historical fact that their development owes a great deal to mathematical

psychology (see, e.g., Dzhafarov, 1995; Falmagne & Doble, 2018; Narens, 2007).

This preface, of course, is not a place to discuss these questions in any detail.

About this Volume

This is the third, and concluding, volume of the New Handbook of Mathematical

Psychology. In the same way as the first two volumes, it offers a representative

sample of several branches of mathematical psychology. This volume focuses on

sensory and perceptual processing, learning and memory, and cognition.

Chapter 1, written by Brian Wandell and David Brainard, surveys low-level

encoding of visual information. Modern vision science is highly interdisciplinary,
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combining ideas from physics, biology, and psychology. In recent years, deductive

mathematics in vision science is often combined with computational modeling

to add realism to the mathematical formulations. Together, the mathematics and

computational tools provide a realistic estimate of the initial signals that the

brain analyzes to render visual judgments of various aspects of visual image,

such as motion, depth, and color. The chapter first traces the calculations from

the representation of the light signal, to how that signal is transformed by the

lens to the retinal image, and then how the image is converted into the cone

photoreceptor excitations. The central steps in the initial encoding rely heavily on

linear systems theory and the mathematics of signal-dependent noise. The chapter

describes computational methods used to understand how light is encoded by cone

excitations. The chapter also provides a mathematical formulation of the ideal

observer that uses all the encoded information to perform a visual discrimination

task, as well as Bayesian methods that combine prior information and sensory data

to estimate the light input. These tools help one to reason about what information

is present in the neural representation, what information is lost, and what types of

neural circuits could extract information to make judgments about a visual scene.

Chapter 2, by Adele Diederich and Hans Colonius, deals with the topic of

multisensory integration – that is, with the merging of the information provided by

different sensory modalities. This topic has been the subject of many competing

theories, often crossing boundaries between psychology and neuroscience. In

defining the somewhat fuzzy term of “multisensory integration,” it has been

observed that at least some kind of numerical measurement assessing the strength

of the crossmodal effects is always required. The focus of this chapter is on

measures of multisensory integration based on both behavioral and single-neuron

recording data: spike numbers, reaction time, frequency of correct or incorrect

responses in detection, recognition, and discrimination tasks. On the empirical

side, these measures typically serve to quantify effects on multisensory integration

of attention, learning, and such factors as age, certain disorders, developmental

conditions, training and rehabilitation. On the theoretical side, these measures

often help to quantify important characteristics of multisensory integration, such as

optimality in combining information or inverse effectiveness, without necessarily

subscribing to any specific model of the mechanisms of multisensory integration.

Ehtibar Dzhafarov and Hans Colonius present a systematic theory of generalized

(or universal) Fechnerian scaling in Chapter 3 that is based on the intuition

underlying Fechner’s original theory. This intuition is that subjective distances

among stimuli are computed by means of cumulating small discriminability values

between “neighboring” stimuli. A stimulus space is supposed to be endowed by a

dissimilarity function, computed from a discrimination probability function for any

pair of stimuli chosen in two distinct observation areas. On the most abstract level,

one considers all possible chains of stimuli leading from a stimulus a to a stimulus

b and back to a, and takes the infimum of the sums of the dissimilarities along these

chains to be the subjective distance between a and b. In arc-connected spaces,

the cumulation of dissimilarity values along all possible chains reduces to their
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xiv Preface

cumulation along continuous paths, leading one to a fully fledged metric geometry.

In topologically Euclidean spaces, the cumulation along paths further reduces to

integration along smooth paths, and the geometry in question acquires the form of

a generalized Finsler geometry. The chapter also discusses such related issues as

Fechner’s original derivation of his logarithmic law, an observational version of

the sorites paradox, a generalized Floyd–Warshall algorithm for computing metric

distances from dissimilarities, an ultra-metric version of Fechnerian scaling, and

data-analytic applications of Fechnerian scaling.

Gregory Ashby, Matthew J. Crossley, and Jeffrey Inglis review mathematical

models of human learning in Chapter 4. Although learning was a key focus

during the early years of mathematical psychology, the cognitive revolution of

the 1960s caused the field to languish for several decades. Two breakthroughs

in neuroscience resurrected the field. The first was the discovery of long-term

potentiation and long-term depression, which served as promising models of

learning at the cellular level. The second was the discovery that humans have

multiple learning and memory systems that each require a qualitatively different

kind of model. Currently, the field is well represented at all of Marr’s three levels

of analysis. Descriptive and process models of human learning are dominated by

two different but converging approaches – one rooted in Bayesian statistics and one

based on popular machine-learning algorithms. Implementational models are in the

form of neural networks that mimic known neuroanatomy and account for learning

via biologically plausible models of synaptic plasticity. Models of all these types

are reviewed, and advantages and disadvantages of the different approaches are

considered.

Marc W. Howard’s Chapter 5 surveys formal models of memory. The idea that

memory behavior relies on a gradually changing internal state has a long history in

mathematical psychology. The chapter traces this line of thought from statistical

learning theory in the 1950s, through distributed memory models in the latter

part of the twentieth century and early part of the twenty-first century, through to

modern models based on a scale-invariant temporal history. The author discusses

the neural phenomena consistent with this form of representation and sketches the

kinds of cognitive models that can be constructed with its use, in connection with

formal models of various memory tasks.

In Chapter 6, Gregory Ashby and Michael Wenger review statistical decision

theory, which provides a general account of perceptual decision-making in a wide

variety of tasks that range from simple target detection to complete identification.

The fundamental assumptions are that all sensory representations are inherently

noisy and that every behavior, no matter how trivial, requires a decision. Statistical

decision theory is referred to as signal detection theory (SDT) when the stimuli

vary on only one sensory dimension, and as general recognition theory (GRT)

when the stimuli vary on two or more sensory dimensions. SDT and GRT are

both reviewed. The SDT review focuses on applications to the two-stimulus

identification task and multiple-look experiments, and on response-time extensions

of the model (e.g., the drift-diffusion model). The GRT review focuses on
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applications to identification and categorization experiments, and in the former

case, especially on experiments in which the stimuli are constructed by factorially

combining several levels of two stimulus dimensions. The basic GRT properties

of perceptual separability, decisional separability, perceptual independence, and

holism are described. In the case of identification experiments, the summary

statistics methods for testing perceptual interactions are described, and so is the

model-fitting approach. Response time and neuroscience extensions of GRT are

reviewed.

Chapter 7, written by Hans Colonius and Adele Diederich, deals with response

inhibition, which is an organism’s ability to suppress unwanted impulses, or

actions and responses that are no longer required or have become inappropriate.

In a stop-signal task experiment, participants perform a response time task (go

task), and occasionally the go stimulus is followed by a stop signal after a variable

delay, indicating subjects to withhold their response (stop task). The main interest

of modeling is in estimating the unobservable latency of the stopping process as

a characterization of the response inhibition mechanism. The authors analyze and

compare the underlying assumptions of different models, including parametric and

nonparametric versions of the race model. New model classes based on the concept

of copulas are introduced, and a number of unsolved problems facing all existing

models are pointed out.

In Chapter 8, written by Noah Thomas, Brandon M. Turner, and Trisha Van

Zandt, approximate Bayesian analysis is presented as the solution for complex

computational models where no explicit maximum likelihood estimation is possi-

ble. The activation-suppression race model (ASR), which does have a likelihood

amenable to Markov chain Monte Carlo methods, is used to demonstrate the

accuracy with which parameters can be estimated with the approximate Bayesian

methods.

The cognitive diagnosis models considered in Chapter 9 by Jimmy de la Torre

and Miguel A. Sorrel have their historical origins in the field of educational

measurement, as a psychometric tool to provide finer-grained information suitable

for formative assessment. Typically, but not necessarily, these models classify

examinees as masters and nonmasters on a set of binary attributes. The chapter

aims to provide a general overview of the original models and the extensions, and

methodological developments, that have been made in the last decade. The topics

covered in the chapter include model estimation, Q-matrix specification, model

fit evaluation, and procedures for gathering validity and reliability evidences. The

chapter ends with a discussion of future trends in the field.

Finally, Chapter 10, written by Fabian Soto and Gregory Ashby, reviews encod-

ing models in neuroimaging. This is the neuroimaging area closest to mathematical

psychology in which models of neuroimaging data are constructed by combining

assumptions about underlying neural processes with knowledge of the task and

the type of neuroimaging technique being used to produce equations that predict

values of the dependent variable that is measured at each recording site (e.g., the

fMRI BOLD response). Voxel-based encoding models include an encoding model
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that predicts how every hypothesized neural population responds to each stimulus,

and a measurement model that first transforms neural population responses into

aggregate neural activity and then into values of the dependent variable being

measured. Encoding models can be inverted to produce decoding schemes that

use the observed data to make predictions about what stimulus was presented on

each trial, thereby allowing unique tests of a mathematical model. Representational

similarity analysis is a multivariate method that provides unique tests of a model by

comparing its predicted similarity structures to similarity structures extracted from

neuroimaging data. Model-based fMRI is a set of methods that were developed

to test the validity of purely behavioral computational models against fMRI data.

Collectively, encoding methods provide useful and powerful new tests of models –

even purely cognitive models – that would have been considered fantasy just a few

decades ago.
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