Cambridge Elements

Elements of Paleontology
edited by
Colin D. Sumrall
University of Tennessee

THE STRATIGRAPHIC PALEOBIOLOGY OF NONMARINE SYSTEMS

Steven M. Holland
University of Georgia

Katharine M. Loughney
University of Michigan

© in this web service Cambridge University Press
The Stratigraphic Paleobiology of Nonmarine Systems

Elements of Paleontology

DOI: 10.1017/9781108881869
First published online: December 2020

Steven M. Holland
Department of Geology, University of Georgia

Katharine M. Loughney
Department of Ecology and Evolutionary Biology, University of Michigan

Author for correspondence: Steven M. Holland, stratum@uga.edu

Abstract: The principles of stratigraphic paleobiology can be readily applied to the nonmarine fossil record. Consistent spatial and temporal patterns of accommodation and sedimentation in sedimentary basins are an important control on stratigraphic architecture. Temperature and precipitation covary with elevation, causing significant variation in community composition, and changes in base level cause elevation to undergo predictable changes. These principles lead to eight sets of hypotheses about the nonmarine fossil record. Three relate to long-term and cyclical patterns in the preservation of major fossil groups and their taphonomy, as well as the occurrence of fossil concentrations. The remaining hypotheses relate to the widespread occurrence of elevation-correlated gradients in community composition, long-term and cyclical trends in these communities, and the stratigraphic position of abrupt changes in community composition. Testing of these hypotheses makes the stratigraphic paleobiology of nonmarine systems a promising area of investigation.

Keywords: continental, sequence stratigraphy, vertebrates, plants, invertebrates

© Steven M. Holland and Katharine M. Loughney 2020

ISSNs: 2517-780X (online), 2517–7796 (print)