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Introduction

A central theme in Mathematics is that of the search for the optimal repre-

sentative within a certain class of objects, often driven by the minimization

of some energy, reflecting what occurs in many physical processes. From

the early 1960s, Thomas Willmore devoted particular attention to the quest

for the optimal immersion of a given closed surface in Euclidean 3-space,

regarding the minimization of some natural energy, motivated by questions on

the elasticity of biological membranes and the energetic cost associated with

membrane bending deformations.

We can characterize how much a membrane is bent at a particular point

on the membrane by means of the curvature of the osculating circles of

the planar curves obtained as perpendicular cross sections through the point.

The curvature of these circles consists of the inverse of their radii, with a

positive or negative sign depending on whether the membrane curves upwards

or downwards, respectively. The minimal and maximal values of the radii

of the osculating circles associated with a particular point on the membrane

define the principal curvatures, k1 and k2, and, from these, the mean curvature,

H = (k1 + k2)/2, and the Gaussian curvature, K = k1k2, at the point.

In modern literature on the elasticity of membranes, a weighted sum of the

total mean curvature, the total squared mean curvature and the total Gaussian

curvature,

a

∫

H + b

∫

H 2 + c

∫

K,

is considered to be the elastic bending energy of a membrane. By physical

considerations, the total mean curvature is neglected. On the other hand, from

the perspective of critical points of energy, in deformations preserving the

topological type, the total Gaussian curvature can be ignored, according to

Gauss–Bonnet theorem. What is left is what Willmore considered to be the
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2 Introduction

elastic bending energy of a compact, oriented Riemannian surface M , without

boundary, isometrically immersed in R
3,

W =

∫

M

H 2dA,

nowadays known as the Willmore energy.

The Willmore energy had already made its appearance early in the nine-

teenth century, through the works of Marie-Sophie Germain [34, 35] and

Siméon Poisson [60] and their pioneering studies on elasticity and vibrating

properties of thin plates, with the claim that the elastic force of a thin plate

is proportional to its mean curvature. Since then, the mean curvature has

remained a key concept in the theory of elasticity. The Willmore energy

appeared again in the 1920s, in the works of Wilhelm Blaschke [5] and Gerhard

Thomsen [68], but their findings were forgotten and only brought to light after

the increased interest on the subject motivated by the work of Willmore.

A very interesting fact about the Willmore energy is that it is scale-invariant:

if one dilates the surface by any factor, the Willmore energy remains the same.

Think of a round sphere in R
3 as an example: if one increases the radius,

the surface becomes flatter and its squared mean curvature decreases, but, at

the same time, the surface area gets larger, which increases the value of the

total squared mean curvature over the surface. One can show that these two

phenomena counterbalance each other on any surface. In fact, the Willmore

energy has the remarkable property of being invariant under any conformal

transformation of R
3, as established in a paper by James White [71] and,

actually, already known to Blaschke [5] and Thomsen [68].

From the perspective of critical points of energy, the Willmore functional

can be extended to compact, oriented Riemannian surfaces isometrically

immersed in a general Riemannian manifold M̂ with constant sectional

curvature, or space-form, by means of

W =

∫

M

|�0|
2dA,

the total squared norm of the trace-free part �0 of the second fundamental

form: by the Gauss equation, relating the curvature tensors of M and M̂ , we

have

|�0|
2 = 2(|H|2 − K + K̂),

for H the mean curvature vector and K and K̂ the sectional curvatures of M

and M̂ , respectively, so that, in the particular case of surfaces in R
3,

|�0|
2 = 2(H 2 − K),
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Introduction 3

and, therefore, the two functionals share critical points. Willmore surfaces are

the critical points of the Willmore functional.

It is well known that the Levi-Civita connection is not a conformal invariant.

Although the second fundamental form is not conformally invariant, under

a conformal change of the metric, its trace-free part remains invariant, so

the respective squared norm and the area element change in inverse ways,

leaving the Willmore energy unchanged. There is then no reason for carrying

a distinguished metric – instead, we consider a conformal class of metrics.

Our study is one of surfaces in n-dimensional space-forms, with n ≥ 3,

from a conformally invariant point of view.1 So let Sn be the conformal

n-sphere, in which, by stereographic projection, we find, in particular, the

Euclidean n-space, as well as two copies of hyperbolic n-space. Our surfaces

are immersions

� : M → Sn

of a compact, oriented surface M , which we provide with the conformal

structure C� induced by � and with the canonical complex structure (that

is, 90◦ rotation in the positive direction in tangent spaces, a notion that is,

obviously, invariant under conformal changes of the metric). We find a

convenient setting in Jean-Gaston Darboux light cone model of the conformal

n-sphere [26]. So consider the Lorentzian space R
n+1,1 and its light cone L,

and fix a unit timelike vector t0. We identify v ∈ Sn ⊆ R
n+1 with the light-line

through v + t0, identifying, in this way, Sn with the projectivized light cone,

Sn ∼= P(L).

For us, a surface is, in this way, a null line subbundle � = 〈σ 〉 of the trivial

bundle Rn+1,1 over M , with σ : M → L a never-zero section of �. For further

reference, set

�1,0 := � ⊕ dσ(T 1,0M), �0,1 := � ⊕ dσ(T 0,1M),

independently of the choice of a never-zero σ ∈ Ŵ(�), and then

�(1) := �1,0 + �0,1.

Along this text, we shall, in general, make no explicit distinction between

a bundle and its complexification, and move from real tensors to complex

tensors by complex multilinear extension, preserving notation. Our theory is

1 With the exception of the study of constant mean curvature surfaces, in Section 8.2, which
requires carrying a distinguished space-form.
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4 Introduction

local and, throughout this text, restriction to a suitable nonempty open set shall

be underlying. Underlying throughout will be, as well, the identification

∧2
R

n+1,1 ∼= o(Rn+1,1)

of the exterior power ∧2
R

n+1,1 with the orthogonal algebra o(Rn+1,1) via

u ∧ v(w) := (u,w)v − (v,w)u,

for u,v,w ∈ R
n+1,1.

A fundamental construction in conformal geometry of surfaces is the mean

curvature sphere congruence, or central sphere congruence, the bundle of

2-spheres tangent to the surface and sharing with it mean curvature vector at

each point. (Although the mean curvature vector is not conformally invariant,

under a conformal change of the metric, it changes in the same way for the

surface and the osculating 2-sphere.)

In the light cone picture, 2-spheres correspond to (3,1)-planes in R
n+1,1

and, in this way, the central sphere congruence defines a map

S : M → Gr(3,1)(R
n+1,1),

into the Grassmannian G := Gr(3,1)(R
n+1,1) of (3,1)-planes in R

n+1,1. We

have, therefore, a decomposition R
n+1,1 = S ⊕ S⊥ and then a decomposition

of the trivial flat connection d as

d = D + N ,

for D the connection given by the sum of the connections induced by d on S

and S⊥, respectively, through orthogonal projection.

Given μ,η ∈ �1(S∗T G), let (μ ∧ η) be the 2-form defined from the metric

on S∗T G:

(μ ∧ η)(X,Y ) = (μX,ηY ) − (μY ,ηX),

for all X,Y ∈ Ŵ(T M). The Willmore energy of a surface � allows the mani-

festly conformally invariant formulation given by

W(�) =
1

2

∫

M

(dS ∧ ∗dS).

It follows the definition presented in [16], in the quaternionic setting, for the

particular case of n = 4. The intervention of the conformal structure restricts

to the Hodge ∗-operator, which is conformally invariant on 1-forms over a

surface. The 2-form (dS ∧ ∗dS) is a conformally invariant way of expressing

|dS|2dA, with respect to any metric in the conformal class C�, making clear
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that the Willmore energy of � coincides with the Dirichlet energy of its central

sphere congruence,

W(�) = E(S),

as already known to Blaschke [5].

Harmonic maps are the critical points of the Dirichlet energy functional.

Willmore surfaces are closely related to harmonic maps via the central sphere

congruence, in a key result established by Blaschke [5] (for n = 3) and, inde-

pendently, Norio Ejiri [32] and Marco Rigoli [64] (for general n):

Theorem [5, 32, 64] � is a Willmore surface if and only if its central sphere

congruence S is a harmonic map.

The well-developed integrable systems theory of harmonic maps into

Grassmannians now applies. First of all, it provides a zero-curvature char-

acterization of Willmore surfaces. Indeed, for a map into a Grassmannian,

harmonicity amounts to the flatness of a certain family of connections, as

established by Karen Uhlenbeck [69], and so does then the Willmore surface

condition: � is a Willmore surface if and only if

dλ := D + λ−1N 1,0 + λN 0,1

is a flat connection, for all λ ∈ S1.

A larger class of surfaces arises when one imposes the weaker require-

ment that a surface extremize the Willmore functional only with respect

to infinitesimally conformal variations: These are the constrained Willmore

(CW) surfaces. The introduction of a constraint in the variational problem

equips surfaces with Lagrange multipliers, as first proven by Francis Burstall,

Franz Pedit and Ulrich Pinkall [17] and then given the following manifestly

conformally invariant formulation by Burstall and David Calderbank [12]:

Theorem [12, 17] � is a CW surface if and only if there exists a real form

q ∈ �1(� ∧ �(1)) such that2

dλ
q := D + λ−1N 1,0 + λN 0,1 + (λ−2 − 1)q1,0 + (λ2 − 1)q0,1

is a flat connection, for all λ ∈ S1.

Such a form q is said to be a (Lagrange) multiplier for �, and � is said to be

a q-constrained Willmore surface. At times, it will be convenient to make an

explicit reference to the central sphere congruence of �, writing d
λ,q

S for dλ
q .

2 In the literature, the associated family of flat connections corresponding to a different choice of
orientation of M can also be found.
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6 Introduction

Willmore surfaces are the CW surfaces admitting the zero multiplier. This

is not necessarily the only multiplier:

Theorem A CW surface � admits a unique multiplier if and only if � is not

an isothermic surface.

Isothermic surfaces are classically defined by the existence of conformal

curvature line coordinates. Conformal curvature line coordinates are preserved

under conformal changes of the metric and, therefore, so is the isothermic

surface condition, allowing the following manifestly conformally invariant

formulation, due to Burstall, Neil Donaldson, Pedit and Pinkall [14]:

Theorem [14] � is an isothermic surface if and only if there exists a non-

zero closed real 1-form η ∈ �1(� ∧ �(1)). In this case, we say that � is a

η-isothermic surface.

As we shall see, if q1 �= q2 are multipliers for �, then � is a ∗(q1 − q2)-

isothermic surface, and, reciprocally, if � is a η-isothermic q-constrained

Willmore surface, then the set of multipliers for � is the affine space q+〈∗η〉R.

A classical result by Thomsen [68] characterizes isothermic Willmore

surfaces in 3-space as the minimal surfaces in some 3-dimensional space-

form. (In contrast to CW surfaces, constant mean curvature (CMC) surfaces

are not conformally invariant objects, requiring a distinguished space-form to

be considered.)

Theorem [68] � is a minimal surface in some 3-dimensional space-form if

and only if � is an isothermic Willmore surface in 3-space.

Minimal surfaces are defined variationally as the stationary configurations

for the area functional, among all those spanning a given boundary. These

were first considered by Joseph-Louis Lagrange [44], in 1762, who raised the

question of the existence of surfaces of least area among all those spanning

a given closed curve in Euclidean 3-space as boundary. Earlier, Leonhard

Euler [33] had already discussed minimizing properties of the surface now

known as the catenoid, although he only considered variations within a certain

class of surfaces. The problem raised by Lagrange became known as the

Plateau’s Problem, referring to Joseph Plateau [59], who first experimented

with soap films.

A physical model of a minimal surface can be obtained by dipping a wire

loop into a soap solution. The resulting soap film is minimal in the sense that it

always tries to organize itself so that its surface area is as small as possible

while spanning the wire contour. This minimal surface area is, naturally,

reached for the flat position, which happens to be a position of vanishing
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Introduction 7

mean curvature. This does not come as a particular feature of this rather

simple example of minimal surface. In fact, the Euler–Lagrange equation of the

variational problem underlying minimal surfaces turns out to be precisely the

zero mean curvature equation, as discovered by Jean Baptiste Meusnier [52].

The flat position of the soap film is also the position in which the membrane is

the most relaxed. These surfaces are elastic energy minimals and, in this way,

examples of Willmore surfaces.

Unlike flat soap films, soap bubbles exist under a certain surface tension,

in an equilibrium where slightly greater pressure inside the bubble is balanced

by the area-minimizing forces of the bubble itself. With their spherical shape,

soap bubbles are examples of area-minimizing surfaces under the constraint of

the volume enclosed. These are surfaces of (nonzero) constant mean curvature.

Constant mean curvature surfaces in 3-dimensional space-forms are examples

of isothermic CW surfaces, as established by Jörg Richter [63]. The converse,

however, is not true, as established by an example due to Burstall, presented

in [8], of a CW cylinder that does not have constant mean curvature in any

space-form.

The class of CW surfaces in space-forms constitutes a Möbius invariant

class of surfaces with strong links to the theory of integrable systems. The

zero-curvature characterization of CW surfaces presented earlier allows one

to deduce two types of symmetry: a spectral deformation, by the action of

a loop of flat metric connections, following the work of Uhlenbeck [69],

as well as Bäcklund transformations, by the application of a version of

the dressing action by simple factors developed by Chuu-Lian Terng and

Uhlenbeck [67].

Suppose that � is a q-constrained Willmore surface. The two types of

transformations that we describe next apply to any choice of the multiplier q

(when there is a choice to be made) and depend on it. In the particular case that

� is a Willmore surface, consider, for the moment, q to be the zero multiplier.

The simplest transformation of � into new CW surfaces arises from

exploiting a scaling freedom in the spectral parameter, as follows. For each

λ ∈ S1, the flatness of the metric connection dλ
q establishes the existence of an

isometry of bundles

φλ : (Rn+1,1,dλ
q ) → (Rn+1,1,d),

preserving connections, defined on a simply connected component of M and

unique up to a Möbius transformation. We define a spectral deformation of �

by setting, for each λ ∈ S1,

�λ := φλ�.
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8 Introduction

For each λ ∈ S1, set

qλ := φλ ◦ (λ−2q1,0 + λ2q0,1) ◦ (φλ)
−1.

The central sphere congruence of �λ is φλS and, given μ ∈ S1, we have

d
μ,qλ

φλS = φλ ◦ d
μλ,q
S ◦ (φλ)

−1,

establishing the flatness of d
μ,qλ

φλS from that of d
μλ,q
S (note that μλ ∈ S1). It

follows that:

Theorem �λ is a qλ-constrained Willmore surface, for all λ ∈ S1.

In particular, this spectral deformation preserves the zero multiplier.

Corollary If � is a Willmore surface, then so is �λ, for all λ ∈ S1.

This spectral deformation coincides, up to reparameterization, with the one

presented by Burstall–Pedit–Pinkall [17], in terms of the Hopf differential and

the Schwarzian derivative, as we shall verify.

The isothermic surface condition is known [17] to be preserved under CW

spectral deformation. In our setting, one can verify that, if � is a η-isothermic

surface, then �λ is a ηλ-isothermic surface, for

ηλ := φλ ◦ (λ−1η1,0 + λη0,1) ◦ (φλ)
−1.

Theorem [17] If � is an isothermic surface, then so is �λ, for all λ ∈ S1.

Hence:

Corollary If � is a minimal surface in some 3-dimensional space-form, then

so is �λ, for each λ ∈ S1 (although not necessarily with preservation of the

space-form).

As we shall see, following the introduction of the notion of conserved

quantity of a CW surface, this spectral deformation preserves, as well, the

class of CMC surfaces in 3-dimensional space-forms, for special choices of

the spectral parameter.

Having exploited the equivalence of d
λ,q
S to the trivial flat connection, as

flat metric connections, by means of

d
λ,q

S = (φλ)
−1 ◦ d ◦ φλ,

next, we explore gauge equivalences starting from d
λ,q
S , i.e., equivalences

given by

d
λ,q∗

S∗ = r(λ) ◦ d
λ,q

S ◦ r(λ)−1,
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for some q∗ and some S∗, with r(λ) ∈ Ŵ(O(Rn+1,1)), so that the flatness of

d
λ,q

S establishes that of d
λ,q∗

S∗ . The difficulties involved are of two different

orders, namely, the preservation of the algebraic shape of d
λ,q

S , together with

ensuring that S∗ still is the central sphere congruence of some surface, so

that the family of flat connections d
λ,q∗

S∗ is the associated family to some CW

surface. A version of the Terng–Uhlenbeck [67] dressing action by simple

factors proves to offer a simple construction, out of two parameters – a complex

number α and a null line bundle L, parallel with respect to d
α,q
S – from which

we define, respectively, the eigenvalues and the eigenspaces of two different

types of linear fractional transformations, whose composition produces a

desired gauge transformation r , as follows.

Let ρ denote reflection across S,

ρ = πS − πS⊥,

for πS and πS⊥ the orthogonal projections of R
n+1,1 onto S and S⊥,

respectively. Given α ∈ C and L a null line subbundle of Rn+1,1 such that

ρL ∩ L⊥ = 0, set

pα,L(λ) := I

⎧

⎪

⎨

⎪

⎩

α−λ
α+λ

on L

1 on (L ⊕ ρL)⊥

α+λ
α−λ

on ρL

,

for λ ∈ C\{±α} and I ∈ Ŵ(O(Rn+1,1)) the identity map of Rn+1,1. Let qα,L

denote the map obtained from pα,L by considering the additive inverses of

the eigenvalues associated to the eigenspaces L and ρL, respectively. Define

pα,L(∞) and qα,L(∞) by holomorphic extension of

pα,L,qα,L : C\{±α} → Ŵ(O(Rn+1,1)),

respectively.

Now, consider α ∈ C\(S1 ∪ {0}) and L a d
α,q
S -parallel null line subbundle

of Rn+1,1 such that ρL ∩ L⊥ = 0 (whose existence can be proved). Set α∗ :=

α−1, L′ := pα,L(α∗)L and, for each λ ∈ P
1\{±α},

r(λ) := qα∗,L′(λ) pα,L(λ).

Consider the transform

S∗ := r(1)−1S

of S and the transform

�∗ := (r(1)−1 r(∞)�1,0) ∩ (r(1)−1 r(0)�0,1)
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10 Introduction

of �, defining, in particular, a surface with central sphere congruence S∗. Set,

furthermore,

q∗ := r(1)−1 ◦ (r(0) ◦ q1,0 ◦ r(0)−1 + r(∞) ◦ q0,1 ◦ r(∞)−1) ◦ r(1).

Theorem �∗ is a q∗-constrained Willmore surface, said to be the Bäcklund

transform of � of parameters α,L.3

In particular, Bäcklund transformation preserves the zero multiplier.

Corollary If � is a Willmore surface, then so is �∗.

It is not clear that if � is an isothermic surface, then so is �∗. So far, it is not

clear either that Bäcklund transformation preserves the class of minimal sur-

faces in 3-dimensional space-forms. However, as we shall see later, that proves

to be the case. We shall see, furthermore, following the introduction of the

notion of conserved quantity of a CW surface, that Bäcklund transformation

preserves the class of CMC surfaces in 3-dimensional space-forms, for special

choices of parameters, with preservation of both the mean curvature and the

curvature of space, defining, in particular, a transformation within the class of

minimal surfaces in space-forms, with preservation of the space-form.

As established by Burstall–Donaldson–Pedit–Pinkall [14], the isothermic

surface condition amounts, just as well, to the flatness of a certain family ∇ t

of connections, indexed in R. The theory of ordinary differential equations

ensures that one can find ∇ t -parallel sections depending smoothly on the spec-

tral parameter t . The existence of such sections with polynomial dependence

on t is of particular geometric significance, as first observed by Burstall–

Calderbank [13], and gave rise to the notion of polynomial conserved quantity,

developed by Burstall and Susana Santos [20] in the isothermic context. We are

in this way led to the notion of conserved quantity for CW surfaces, presented

in Chapter 7.

Let � be a q-constrained Willmore surface. A Laurent polynomial

p(λ) = λ−1v + v0 + λv,

with v0 ∈ Ŵ(S) real, v ∈ Ŵ(S⊥) and

p(1) �= 0,

3 In [18], an extra factor is introduced in the eigenvalues of pα,L(λ), resulting in the
normalisation of the family λ �→ pα,L(λ), pα,L(1) = I .
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