

Cambridge Elements =

Elements in Quantitative Finance edited by Riccardo Rebonato EDHEC Business School

MACHINE LEARNING FOR ASSET MANAGERS

Marcos M. López de Prado Cornell University

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre,
New Delhi – 110025, India

79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781108792899
DOI: 10.1017/9781108883658

© True Positive Technologies, LP 2020

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2020

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-79289-9 Paperback ISSN 2631-8571 (online) ISSN 2631-8563 (print)

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Machine Learning for Asset Managers

Elements In Quantitative Finance

DOI: 10.1017/9781108883658 First published online: April 2020

Marcos M. López de Prado Cornell University

Author for correspondence: ml863@cornell.edu

Abstract: Successful investment strategies are specific implementations of general theories. An investment strategy that lacks a theoretical justification is likely to be false. Hence, an asset manager should concentrate her efforts on developing a theory rather than on backtesting potential trading rules. The purpose of this Element is to introduce machine learning (ML) tools that can help asset managers discover economic and financial theories. ML is not a black box, and it does not necessarily overfit. ML tools complement rather than replace the classical statistical methods. Some of ML's strengths include: (1) a focus on out-ofsample predictability instead of in-sample variance adjudication; (2) the use of computational methods to avoid relying on (potentially unrealistic) assumptions; (3) the ability to "learn" complex specifications, including nonlinear, hierarchical, and noncontinuous interaction effects in a highdimensional space; and (4) the ability to disentangle the variable search from the specification search, in a manner that is robust to multicollinearity and other substitution effects.

Keywords: machine learning, unsupervised learning, supervised learning, clustering, classification, labeling, portfolio construction

JEL classifications: G0, G1, G2, G15, G24, E44 **AMS classifications:** 91G10, 91G60, 91G70, 62C, 60E

© True Positive Technologies, LP 2020 ISBNs: 9781108792899 (PB), 9781108883658 (OC) ISSNs: 2631-8571 (online), 2631-8563 (print)

Contents

1	Introduction	1
2	Denoising and Detoning	24
3	Distance Metrics	38
4	Optimal Clustering	52
5	Financial Labels	65
6	Feature Importance Analysis	74
7	Portfolio Construction	92
8	Testing Set Overfitting	105
	Appendix A: Testing on Synthetic Data	125
	Appendix B: Proof of the "False Strategy" Theorem	128
	Bibliography	130
	References	136