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Stability of Tangent Bundles on Smooth Toric

Picard-rank-2 Varieties and Surfaces
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To Bill Fulton on the occasion of his 80th birthday.

Abstract. We give a combinatorial criterion for the tangent bundle on a

smooth toric variety to be stable with respect to a given polarisation in terms

of the corresponding lattice polytope. Furthermore, we show that for a smooth

toric surface X and a smooth toric variety of Picard rank 2, there exists an

ample line bundle with respect to which the tangent bundle is stable if and

only if it is an iterated blow-up of projective space.

1 Introduction

Let X be a smooth toric variety of dimension n over a field of characteristic

0, with tangent bundle TX. Let O(D) be an ample line bundle. Recall that the

slope of a torsion-free sheaf E on a normal projective variety X with respect to

a nef line bundle O(D) is defined to be

μ(E) =
c1(E) · Dn−1

rank(E)
,

and that E is stable (resp. semistable) with respect to O(D) if for any subsheaf

F of E of smaller rank, we have μ(F) < μ(E) (resp. μ(F) ≤ μ(E)). A direct

sum of stable sheaves with identical slope is called polystable. A situation

of particular interest is when X is Fano, E = TX is the tangent bundle, and

D = −KX the anticanonical divisor, in particular, since the existence of a

Kähler–Einstein metric on a Fano variety implies that the tangent bundle is

polystable with respect to the anticanonical polarisation, see Section 1.1 for

more details.
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The main question we discuss in this article is when toric varieties admit

a polarisation O(D) such that the tangent bundle TX is stable with respect to

O(D). This question has been studied in [29] and recently also by Biswas, Dey,

Genc, and Poddar in [2]. Note that it is well-known that the tangent bundle on

projective space is stable with respect to OPn(1).

Theorem 1.1 Let X be a smooth toric surface or a smooth toric variety of

Picard rank 2. Then there exists an ample line bundle L on X such that TX

is stable with respect to L if and only if it is an iterated blow-up of projective

space.

For more precise statements, see Theorems 1.3 and 1.4. Theorem 1.4 and

a more detailed discussion of the Fano case has been independently obtained

by Dasgupta, Dey, and Khan [11]. While for smooth toric varieties of Picard

rank 3 it is an open question whether Theorem 1.1 holds, there exists a toric

Fano 3-fold of Picard rank 4 whose tangent bundle is stable with respect to

the anticanonical polarisation, but that does not admit a morphism to P3, see

Example 5.1.

We deduce the following criterion for the tangent bundle TX on a toric

variety X to be stable with respect to a given polarisation O(D) from well-

known descriptions of stability conditions in terms of the Klyachko filtrations

associated to the tangent bundle (see, for example, [20, 21, 23]). Now fix a

fan � corresponding to X. Let PD be the lattice polytope associated to D. For

each ray ρ in �, let P
ρ
D denote the facet corresponding to ρ, and let vρ denote

the primitive vector generating ρ.

Proposition 1.2 The tangent bundle on a smooth projective toric variety X of

dimension n is (semi)-stable with respect to an ample line bundle O(D) on X if

and only if for every proper subspace F � N ⊗k that is generated by primitive

vectors vρ generating rays in the fan �, the following inequality holds:

1

dim F

∑

vρ∈F

vol(P
ρ
D)

(≤)
<

1

n

∑

ρ

vol(P
ρ
D) =

1

n
vol ∂PD . (1)

Here, vol(P ρ) denotes the lattice volume inside the affine span of P ρ with

respect to the lattice span(P ρ) ∩ M .

We now present our results with more details. Let Amp(X) ⊂ N1(X)R

denote the ample cone of X. It is convenient to define

Stab(TX) = {D ∈ Amp(X) | TX is stable with respect to O(D)}, and

sStab(TX) = {D ∈ Amp(X) | TX is semistable with respect to O(D)}.
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14 Stability of Tangent Bundles 3

Using results from [14] one can show that if for a Q-factorial vari-

ety Stab(TX) is non-empty, then for any birational morphism X′ → X,

Stab(TX′) 	= ∅, see 2.7. In particular, since the tangent bundle to Pn is

stable with respect to the anticanonical polarisation, any iterated blow-up of

projective space has Stab(TX) 	= ∅.

Recall that every smooth toric surface is either a successive toric blow-up

of P2 or of a Hirzebruch surface Fa . In Lemma 3.2, we characterise the fans

of smooth toric surfaces that are not a blow-up of P2 and use this to prove the

following theorem.

Theorem 1.3 Let X be a smooth toric surface. Then

1 Stab(TX) = Amp(X) if and only if X = P2

2 ∅ = Stab(TX) � sStab(TX) if and only if X ∼= P1 × P1.

3 ∅ � Stab(TX) � Amp(X) if and only if X is an iterated blow-up of P2, but

not P2 itself,

4 Stab(TX) = ∅ if and only if X is not an iterated blow-up of P2.

In [2, Theorem 6.2], Biswas et al. show that when X is the Hirzebruch

surface Fa , a ≥ 2 implies that Stab(TX) = ∅ and for a = 1 they describe

Stab(TX) in [2, Corollary 6.3].

Projectivisations of direct sums of line bundles on projective spaces yield

examples of toric Fano varieties under some conditions, but are also interesting

in their own right. By [18, Theorem 1] every smooth toric variety of Picard rank

2 is of the form X = PPs (O ⊕
⊕r

i=1 O(ai)), and X is a blow-up of Ps if and

only if (a1, . . . ,ar) = (0, . . . ,0,1). Note that the polytopes corresponding to

ample line bundles on these varieties are special cases of Cayley polytopes, see

for example [4].

In general, the projectivization X := PY (E) = ProjY (
⊕

m SmE) of a vector

bundle E on a variety Y admits a relatively ample line bundle OX(1) induced

by the relative Proj construction and we have Pic(X) = π∗ Pic(Y ) ⊕ ZOX(1).

Here, π : X → Y is the structure morphism of the relative Proj-construction. In

the following, we always have Y = Ps and every element of the Picard group

of X can be uniquely written in the form OX(λ) ⊗ π∗O(μ) with λ,μ ∈ Z.

Theorem 1.4 Consider the smooth projective variety

X = P(OPs ⊕

r
⊕

i=1

OPs (ai))

for s,r ≥ 1 with 0 ≤ a1 ≤ · · · ≤ ar . For ar ≥ 1, we have Stab(TX) 	= ∅ if and

only if sStab(TX) 	= ∅ if and only if (a1, . . . ,ar) = (0, . . . ,0,1). In this case,
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TX is (semi-)stable with respect to a polarisation L = OX(λ) ⊗ π∗O(μ) if

and only if p(μ/λ)
(≤)
< 0, where p(x) is the following polynomial of degree s:

p(x) := −

⎛

⎝

s−1
∑

q=0

(

r + s − 1

q

)

xq

⎞

⎠ +
s(r + 1)

r

(

r + s − 1

s

)

xs .

We note that p(μ/λ) < 0 if and only if μ/λ is in the interval (0,γ ), where γ

is the only positive root of p(x). For r = 1 we have γ = 1

(2s+1)1/s−1
, and for

s = 1 we get γ = 1
r+1

.

One has ∅ = Stab(TX) � sStab(TX) if and only if (a1, . . . ,ar) =

(0, . . . ,0), i.e. if X = Ps × Pr . In this case TX is semistable only with respect

to pluri-anticanonical polarisations.

This result has been independently proved by [11]. It is extending a result

by Biswas et. al. [2, Theorem 8.1], who show that in the Fano case (when

0 < a ≤ s), and when s ≥ 2, the tangent bundle on X = PPs (O ⊕ O(a)) is

not stable with respect to the anticanonical polarisation O(−KX) = O(2) ⊗

π∗O(s + 1 − a).

The tangent bundle to a smooth Fano surface is stable with respect

to the anticanonical polarisation by [12]. Moreoever, in [31] all smooth

Fano threefolds with stable (resp. semistable) tangent bundle are classified.

Moreover, for smooth toric Fano varieties of dimension 4 and Picard rank

2, the (semi-)stability of the tangent bundle with respect to the anticanonical

polarisation is treated in [2, Section 9], and for smooth toric Fano varieties of

dimension 4 and Picard rank 3 in [11].

The above results motivate the following question:

Question 1.5 Are there only finitely many isomorphism classes of smooth

projective toric varieties X of given dimension n and Picard number ρ with

Stab(TX) 	= ∅?

Corollary 1.6 Question 1.5 has an affirmative answer for n ≤ 2 or ρ ≤ 2.

Proof The cases n = 1 or ρ = 1 are trivial. For n = 2 this follows from

Theorem 1.3(3). For ρ = 2 this follows from Theorem 1.4 (note that dim(X) =

r + s).

1.1 Connections to the existence problem

of Kähler-Einstein metrics

When X is a smooth Fano variety over the complex numbers, the existence

of a Kähler-Einstein metric on the underlying complex manifold X implies
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that its tangent bundle is polystable, (in particular, semistable) with respect to

the anticanonical polarisation [25], [22, Sec 5.8]. However, the converse does

not hold for the blow-up of P2 in two points [27]. The recent proof of the

Yau–Tian–Donaldson conjecture [5, 6, 7, 8] shows that a Fano manifold has a

Kähler-Einstein metric if and only if it is K-polystable. For a general toric Fano

variety K-stability is equivalent to the fact that for the polytope corresponding

to the anticanonical polarisation the barycenter coincides with the origin [24],

in the smooth case this was known before due to combining [32] and [26].

Thus we obtain the following combinatorial statement:

Corollary 1.7 Let P be a smooth reflexive polytope with barycenter in the

origin. Then P satisfies the non-strict inequality (1) for every proper linear

subspace F ⊂ NQ.

This statement has been known to combinatorialists in a more general

setting that implies the statement for reflexive polytopes with barycenter in

the origin (without the smoothness assumption). Conditions of this type are

known in convex geometry under the name subspace concentration conditions.

They play a distinguished role in several problems from convex geometry, see

e.g. [17, 16, 15]. The fact that this condition holds for a reflexive polytope

whenever the barycenter coincides with the origin is far from being obvious.

Moreover, our argument via Kähler-Einstein metrics is valid only in the smooth

case (since we have to rely on [25], [22, Sec 5.8]), but the fact turns out to be

true for every reflexive polytope. This follows from an even more general result

in [15, Thm 1.1], which applies to every polytope with barycentre at the origin.

Their proof relies entirely on methods from convex geometry.
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2 Stability conditions for equivariant sheaves

We fix our setting as follows. We consider a polarized toric variety (X,O(D))

corresponding to a lattice polytope P . Let � be the normal fan of P and P ρ

the facet of P corresponding to a ray ρ ∈ �. Denote by �(1) the set of rays

in �.

Recall that a coherent sheaf E is called reflexive if E ∼= E∨∨, where E∨ =

Hom(E,OX). In [19] equivariant vector bundles on smooth toric varieties were

classified in terms of collections of filtrations of k-vector spaces indexed by

the rays of �. This classficiation extends to equivariant reflexive sheaves on

normal toric varieties, see for example, [21, 30].

More precisely, we fix a k-vector space E and for every ray ρ ∈ �(1) we

consider a decreasing filtration by subspaces

E ⊃ · · · ⊃ Eρ(i − 1) ⊃ Eρ(i) ⊃ Eρ(i + 1) ⊃ · · · ⊃ 0,

such that Eρ(i) differs from E and 0 only for finitely many values of i ∈ Z.

Given such a collection of filtrations for every cone σ ⊂ � we may consider

Eu :=

⎛

⎝

⋂

ρ∈�(1)

Eρ(−〈vρ,u〉)

⎞

⎠ ⊗ χu ⊂ E ⊗ k[M].

Then
⊕

u∈M Eu is equipped with the structure of an M-graded k[Uσ ]-module

via the natural multiplication with χu ∈ k[Uσ ]. Then setting H 0(Uσ ,E) =
⊕

u∈M Eu for every σ ∈ � defines an equivariant reflexive sheaf on X.

The collections of filtrations form an abelian category in a natural way. A

morphism between a collection of filtrations F ρ(i) of a vector space F and

another collection Eρ(i) of filtrations of a vector space E is a linear map

L : F → E that is compatible with the filtrations, i.e. L(F ρ(i)) ⊂ Eρ(i)

for all ρ ∈ �(1) and all i ∈ Z.

Theorem 2.1 There is an equivalence of categories between equivariant

reflexive sheaves on a toric variety X = X� and collections of filtrations of

k-vector spaces indexed by the rays of �. Here, the rank of the reflexive sheaf

equals the dimension of the filtered k-vector space.

For a collection of filtrations Eρ(i), we set e[ρ](i) = dim Eρ(i) −

dim Eρ(i + 1). Similarly, for other filtrations we will always use the lower

letter version to denote the differences of dimensions between the steps of the

filtration. Then we have the following formula.
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14 Stability of Tangent Bundles 7

Lemma 2.2 Assume that X is smooth. With the notation above we have

μ(E) =
1

dim E

∑

i,ρ

i · e[ρ](i) · vol(P ρ).

Proof By [23, Corollary 3.18], we have c1(E) =
∑

ρ

∑

i∈Z ie[ρ](i)Dρ . Now,

for a ray ρ ∈ �(1) the intersection number Dn−1 · Dρ is given by the volume

of the corresponding facet P ρ of P , see e.g. [9].

With the notation above we get the following characterisation of stability.

Proposition 2.3 Let X be a smooth toric variety. A toric vector bundle E on X

corresponding to filtrations Eρ(i) is (semi-)stable if and only if the following

inequality holds for every linear subspace F ⊂ E and F ρ(i) = Eρ(i) ∩ F .

1

dim F

∑

i,ρ

i · f [ρ](i) · vol(P ρ)
(≤)
<

1

dim E

∑

i,ρ

i · e[ρ](i) · vol(P ρ) (2)

Proof By [23, Proposition 4.13] it is sufficient to consider equivariant

reflexive subsheaves. It remains to show that it is sufficient to consider those

subsheaves, which correspond to filtrations of the form Eρ(i) ∩ F . For every

subsheaf F ′ ⊂ E corresponding to filtrations (F ′)ρ(i) ⊂ Eρ(i) of some

subspace F ⊂ E we may consider the subsheaf F corresponding to the

filtrations F ρ(i) := Eρ(i) ∩ F . Then dim F ρ(i) ≥ dim(F ′)ρ(i) for all i,ρ.

Now, Lemma 2.5 implies that μ(F) ≥ μ(F ′).

Remark 2.4 A subsheaf F of a torsion-free sheaf E is called saturated if E/F

is torsion-free. The saturation of a subsheaf F ⊂ E is the smallest saturated

subsheaf of E containing F . It is not hard to derive from the description of

H 0(Uσ ,E) given above, that F ⊂ E given by F ρ(i) ⊂ Eρ(i) is saturated, if

and only if F ρ(i) = Eρ(i) ∩ F . Hence, Lemma 2.5 below can be seen as a

combinatorial version of the well-known fact that replacing a subsheaf by its

saturation increases the slope.

Lemma 2.5 Given integer functions f,g : Z → Z with f ≥ g such that

{i ∈ Z | f (i) 	= g(i)} is finite. Then also

∑

i

i · (f (i) − f (i + 1)) ≥
∑

i

i · (g(i) − g(i + 1))

holds.

Proof Note that the assumption implies that A(f,g) :=
∑

i(f (i)−g(i)) ≥ 0

is finite. We fix f and proceed by induction on A(f,g). If A(f,g) = 0, f = g

and the statement is trivially true. Fix f and assume that the statement holds
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for all g ≤ f with A(f,g) ≤ A. Let g′ be such that A(f,g′) = A + 1. Since

A > 0, there exists a k such that f (k) > g′(k). Define

g(i) =

{

g′(i) if i 	= k

g′(i) + 1 if i = k.

Then A(f,g) = A. We calculate
∑

i i · (g(i) − g(i + 1)) =
∑

i i · (g′(i) −

g′(i + 1)) + 1. By induction hypothesis, we have
∑

i i · (f (i) − f (i + 1)) ≥
∑

i i · (g(i) − g(i + 1)) >
∑

i i · (g′(i) − g′(i + 1)).

By [19] the filtrations of the tangent bundle on TX on a smooth toric variety

X have the following form.

Eρ(j) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

N ⊗ k j < 1

spank(vρ) j = 1

0 j > 1

(3)

Proof of Proposition 1.2 Looking at the filtrations Eρ(i) for TX from (3) we

see that

e[ρ](i) = Eρ(i) − Eρ(i + 1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

n − 1 j = 0

1 j = 1

0 else.

Similarly, for a proper subspace F ⊂ NR and F ρ(i) = Eρ(i) ∩ F , we have

f [ρ](i) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dim(F ) − 2 j = 0

1 j = 1

0 else,

or f [ρ](i) =

{

dim(F ) − 1 j = 0

0 else,

depending on whether vρ is contained in the subspace F or not. Now, Proposi-

tion 2.3 immediately implies that TX is (semi-)stable if and only if (1) holds for

every proper subspace F ⊂ NR. To see that it suffices to test (1) for subspaces

of the form F = spank R with R ⊂ �(1), assume that F , given by some

F ⊂ N ⊗ k, destabilises TX. Then we may choose F ′ corresponding to F ′ :=

span{vρ ⊂ �(1) | vρ ⊂ F }. With this choice we have
∑

vρ∈F vol(P ρ) =
∑

vρ∈F ′ vol(P ρ) and rkF ′ = dim F ′ ≤ dim F = rkF .

Example 2.6 For Pn a polarisation is given by O(d). The corresponding

polytope is a d-fold dilation of the standard simplex 
 ⊂ Rn. Every facet

of d
 has lattice volume dn−1. For every proper subset R � �(1) and
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14 Stability of Tangent Bundles 9

F = span R we have dim F = #R. Now (1) becomes dn−1 < dn−1 ·(n+1)/n.

Hence, we recover the well-known fact that Pn has a stable tangent bundle.

Lemma 2.7 Assume that X is Q-factorial and Stab(TX) is non-empty. If there

is a birational morphism f : X′ → X , then Stab(TX′) is non-empty, as well.

Proof Consider a polarisation O(D) of X, such that TX is stable. Then TX′ is

stable with respect to the nef and big bundle O(f ∗D), since any destabilising

subsheaf F ′ ⊂ TX′ with respect to O(f ∗D) would induce a subsheaf (f∗F
′) ⊂

TX which, by projection formula, would be destabilising with respect to O(D).

Now, the openness property from [14, Thm 3.3] ensures the existence of a sta-

bilising ample class, which is given as a small pertubation of [O(f ∗D)].

We also have the following equivalent for the strictly unstable case.

Lemma 2.8 Assume that X is Q-factorial and Amp(X) \ sStab(TX) is non-

empty. If there is a birational morphism f : X′ → X , then Amp(X′) \

sStab(TX′) is also non-empty.

Proof Assume that a subsheaf F ⊂ TX destabilises TX strictly with respect

to an ample polarisation O(D). Then we note that f ∗F and TX′ are both

subsheaves of f ∗TX. Now, we claim that F ′ := f ∗F ∩ TX′ destabilises TX′

with respect to O(D′) = f ∗O(D). Indeed, by the projection formula we obtain

c1(TX′).(D′)n−1 = c1(TX).(D)n−1

c1(F
′).(D′)n−1 = c1(F).(D)n−1.

The line bundle O(D′) is only nef, but the condition that a subsheaf destabilises

strictly is an open condition on the divisor class. Hence, we can find an ample

divisor class with the same property as a small perturbation of O(D′).

3 Smooth toric surfaces

Every toric surface can be obtained via equivariant blow-ups from P2 or from

a Hirzebruch surface Fa = PP1(OP1 ⊕OP1(a)), see e.g. [28]. For P2 it is well-

known that the tangent bundle is stable (see also Example 2.6). The following

corollary, which can be also found e.g. in [2, Sec. 6], clarifies the situation for

the Hirzebruch surfaces.

Corollary 3.1 For a Hirzebruch surface Fa = PP1(OP1 ⊕ OP1(a)) the

tangent bundle is semistable with respect to OFa (λ) ⊗ π∗OP1(μ) in the

following cases
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1 a = 0 and λ = μ,

2 a = 1 and 2μ ≤ λ.

The tangent bundle is stable if and only if a = 1 and 2μ < λ.

Proof The claim follows directly from Theorem 1.4 for the case r = s = 1.

Lemma 3.2 A smooth toric surface X = X� is not a blowup of P2 or P1×P1

if and only if there are integers a,c,e fulfilling a ≥ c > e + 1 ≥ 1 such that

after an appropriate choice of basis for N :

1 � contains the rays spanned by

(0,1),(1,0), (0, − 1),(1, − e), (−1,c),(−1,a)

2 all other rays are contained in the cones 〈(−1,c),(−1,a)〉 and

〈(1,0),(1, − e)〉.

Remark 3.3 Note, that in Lemma 3.2 we explicitly allow the cases (1, −e) =

(1,0) (−1,c) = (−1,a).

Proof For example by [28, Thm. 1.28] we may find a ray 〈v〉 ∈ �(1) such

that −v spans another ray in �(1). We then may number the ray generators

(0, 1)

(0, −1)

(1, 0)

(1, −e)

(−1, a)

(−1, c)

Figure 1 Schematic picture of a fan of a toric surface which does not blow down

to P2 or P1 × P1. All additional rays have to be contained in the shaded regions.
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