Contents

Foreword
Mihai Putinar
Preface

PART ONE PRELIMINARIES: ENTRYWISE POWERS PRESERVING POSITIVITY IN A FIXED DIMENSION

1. The Cone of Positive Semidefinite Matrices
 Page 3

2. The Schur Product Theorem and Nonzero Lower Bounds
 Page 16

3. Totally Positive (TP) and Totally Nonnegative (TN) Matrices
 Page 23

4. Totally Positive Matrices – Generalized Vandermonde and Hankel Moment Matrices
 Page 32

5. Entrywise Powers Preserving Positivity in a Fixed Dimension
 Page 40

6. Midconvex Implies Continuity, and 2 × 2 Preservers
 Page 46

7. Entrywise Preservers of Positivity on Matrices with Zero Patterns
 Page 55

8. Entrywise Powers Preserving Positivity, Monotonicity, and Superadditivity
 Page 64

9. Loewner Convexity and Single Matrix Encoders of Preservers
 Page 72

10. Exercises
 Page 84
Table of Contents

PART TWO ENTRYWISE FUNCTIONS PRESERVING
POSITIVITY IN ALL DIMENSIONS

11 History – Schoenberg, Rudin, Vasudeva, and Metric
 Geometry 97

12 Loewner’s Determinant Calculation in Horn’s Thesis 114

13 The Stronger Horn–Loewner Theorem via Mollifiers 120

14 Stronger Vasudeva and Schoenberg Theorems via
 Bernstein’s Theorem 127

15 Proof of the Stronger Schoenberg Theorem (Part I) –
 Positivity Certificates 135

16 Proof of the Stronger Schoenberg Theorem (Part II) –
 Real Analyticity 144

17 Proof of the Stronger Schoenberg Theorem (Part III) –
 Complex Analysis 151

18 Preservers of Loewner Positivity on Kernels 155

19 Preservers of Loewner Monotonicity and Convexity
 on Kernels 159

20 Functions Acting Outside Forbidden Diagonal Blocks 168

21 The Boas–Widder Theorem on Functions with Positive
 Differences 176

22 Menger’s Results and Euclidean Distance Geometry 190

23 Exercises 203

PART THREE ENTRYWISE POLYNOMIALS
 PRESERVING POSITIVITY IN A FIXED DIMENSION

24 Entrywise Polynomial Preservers and Horn–Loewner-Type
 Conditions 213

25 Polynomial Preservers for Rank-1 Matrices, via Schur
 Polynomials 220

26 First-Order Approximation and the Leading Term of
 Schur Polynomials 228
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Exact Quantitative Bound – Monotonicity of Schur Ratios</td>
<td>233</td>
</tr>
<tr>
<td>28</td>
<td>Polynomial Preservers on Matrices with Real or Complex Entries</td>
<td>245</td>
</tr>
<tr>
<td>29</td>
<td>Cauchy and Littlewood’s Definitions of Schur Polynomials</td>
<td>256</td>
</tr>
<tr>
<td>30</td>
<td>Exercises</td>
<td>264</td>
</tr>
<tr>
<td></td>
<td>Part I: Bibliographic Notes and References</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>Part II: Bibliographic Notes and References</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>Part III: Bibliographic Notes and References</td>
<td>276</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>291</td>
</tr>
</tbody>
</table>