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“Positive definite matrices, kernels, sequences and functions, and operations on them

that preserve their positivity, have been studied intensely for over a century. The

techniques involved in their analysis and the variety of their applications both continue

to grow. This book is an admirably comprehensive and lucid account of the topic. It

includes some very recent developments in which the author has played a major role.

This will be a valuable resource for researchers and an excellent text for a graduate

course.”

– Rajendra Bhatia, Ashoka University

“Khare demonstrates an extensive knowledge of this material and has taken consid-

erable responsibility in presenting a blend of classical and contemporary topics in

an appealing style opening the text to a broad readership with an interest in matrix

positivity and their associated preservers. I expect this reference will be indispensable

for both new and active researchers in this subject area.”

– Dr. Shaun Fallat, University of Regina

“The opening notes of this symphony of ideas were written by Schur in 1911.

Schoenberg, Loewner, Rudin, Herz, Hiai, FitzGerald, Jain, Guillot, Rajaratnam, Belton,

Putinar, and others composed new themes and variations. Now, Khare has orchestrated

a masterwork that includes his own harmonies in an elegant synthesis. This is a work

of impressive scholarship.”

– Roger Horn, University of Utah, Retired

“Classical chapters of matrix analysis and function theory are masterfully interlaced

by the author with very recent advances. The resulting journey is distinguished by a

careful balance between technical detail and historical notes. Relevant exercises and

open problems challenge the reader. The joy of fresh discovery permeates every page

of the book.”

– Mihai Putinar, University of California, Santa Barbara and Newcastle University

“It has been known since the classical product theorem of Schur that the positivity

properties of matrices can interact well with entrywise transformations. This mono-

graph systematically explores this surprisingly rich interaction and its connections to

such topics as metric geometry or the theory of Schur polynomials; it will be a useful

resource for researchers in this area.”

– Terence Tao, University of California, Los Angeles
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Foreword

Matrix positivity in its broad sense was and remains a catalyst of algebraic

statements with an analytic proof, and of analytic statements with an algebraic

proof. Every working mathematician can provide relevant examples in both

directions. One of the turning points in promoting matrix positivity as a

substitute of analytic techniques is cast in the following quote from a letter

of Hermite:

En poursuivant mes recherches sur le théorème de Mr. Sturm, j’ai reussi à traiter

par les memes principes les équations à coefficients imaginaires; ce qui m’a

conduit au théorème de Mr. Cauchy pour le cas du rectangle, du cercle, et d’une

infinité d’autres courbes qui sont meme à branches infinies, comme l’hyperbole.

La théorie des formes quadratiques vient ainsi donner pour ces théorèmes des

demonstrations indépendantes de toute considération de continuité, comme celle

que Vous avez déjà pu conclure Vous-meme de ce que j’ai dit au sujet du théorème

de Mr. Sturm dans les Comptes rendus de l’Académie. (1853, 1er semestre p. 294).

Extrait d’une lettre de Mr. Ch. Hermite de Paris Mr. Borchardt de Berlin, sur le

nombre des racines d’une équation algébrique comprises entre les limites données,

J. Reine Angew. Math. 52(1856), 39–51

The long-lasting impact of Sturm’s sequence method and Hermite’s

quadratic forms on the development of mathematics is unquestionable. Think

of Tarski’s elimination of quantifiers principle for real closed fields, in itself

the foundation stone of modern real algebraic geometry, respectively the role

of Hermitian forms in spectral analysis or modern differential geometry. As

a sign of vitality of these concepts, and their underlying matrix positivity

characteristic, every new generation of scientists has unveiled fresh facets and

striking applications. For instance, the data of a bounded analytic interpolation

problem is encoded in the positivity of a Nevanlinna–Pick matrix, the power

moments of a mass distribution on the line are characterized by the positivity

of a Hankel matrix, the characteristic function of a probability distribution is

xiv
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Foreword xv

identified to a positive definite kernel, the stability of a dynamical system can

be derived from a positive matrix certificate, and so on.

Coming closer to the topics in the present book, we single out two discov-

erers in the vast landscape of matrix positivity: Charles Loewner (1893–1968)

and Isaac J. Schoenberg (1903–1990). To Loewner we owe the characterization

of matrix monotone functions, that is, differentiable functions f which

preserve via the natural functional calculus the monotonicity of self-adjoint

matrices: if A ≤ B, then f (A) ≤ f (B). Note that when allowing matrices A,B

of arbitrary dimension, these matrix monotone functions are real analytic

with an analytic continuation in the upper-half plane that contains a positive

imaginary part. Matrix monotonicity continues to fascinate to the point that the

recent Springer volume Loewner’s Theorem on Monotone Matrix Functions by

Barry Simon starts with the provocative sentence: “This book is a love poem

to Loewner’s theorem.”

In a different vein, soon after defending his doctoral dissertation, Schoen-

berg started a lifelong exploration of total positivity and variation diminishing

linear transformations. A motivation for his study was the classical Hermite–

Poulain theorem which isolates linear difference operations preserving the

class of polynomials with real roots. Schoenberg’s elaborate construct, master-

fully combining matrix (total) positivity and the harmonic analysis of Laplace

transforms, is unanimously accepted as the foundation of the theory of splines.

A counterpart to Loewner’s theorem, this time for the entrywise functional

calculus f [A], is a byproduct of Schoenberg’s work: if f [A] ≥ 0 for all

matrices A ≥ 0, then f is a real analytic function with nonnegative Taylor

coefficients at zero.

Note in both examples above how purely algebraic and positivity statements

imply the analyticity of the transformation. Apoorva Khare’s book resonates

precisely with this string by adding pertinent advances to the theories of

Loewner and Schoenberg. The main theme is the structure of “positivity

preservers,” that is, entrywise transformations of positive matrices, them

being of a prescribed finite size, infinite, structured, or even depending on a

continuum of variables (better known as kernels). The source of this quest

comes from the years the author spent among statisticians, and their pragmatic

need of operating on large correlation matrices. Soon, however, the expertise

of Professor Khare on group representation theory intervened, by considerably

enlarging the scope and perspective of the inquiry.

The result is a highly original synthesis of a century of matrix positivity

studies interlaced with very recent findings due to the author and his col-

laborators. The volume collects for the first time, in a surprisingly natural

coordination, topics such as: distance geometry, moment problems, complete
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monotonicity, total positivity, graphical models, network analysis, and Schur

polynomials. Qualitative features of the determinant of a linear pencil of

symmetric matrices form the gateway to an array of deep new results touching

the representation theory of the symmetric group, but also very basic concepts

of numerical matrix analysis. Two recurrent phenomena are worth mentioning:

the striking rigidity of entrywise preservers of various positive cones of

matrices or kernels and the existence of a critical exponent for fractional

power transforms, that is, a boundary separating a discrete spectrum from a

continuous one.

The text was forged during two rounds of semester-long courses delivered

by the author. In this sense, the book is far from being a definitive monograph,

rather marking the birth of a promising new interdisciplinary area of research.

Most of the classical theorems are included with complete proofs. Informative

historical notes and a careful selection of exercises, not excluding open

questions, will delight and challenge the reader. The joy of fresh discovery

permeates every page of the book.

Mihai Putinar

University of California at Santa Barbara

and University of Newcastle
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Preface

This text arose out of the course notes for Math 341: Matrix Analysis and

Positivity, a one-semester course on analysis and matrix positivity preservers –

or, more broadly, composition operators preserving various kinds of positive

kernels. The course was offered in Spring 2018 and Fall 2019 at the Indian

Institute of Science (IISc). In the present text, we briefly describe some

notions of positivity in matrix theory, followed by our main focus: a detailed

study of the operations that preserve these notions (and, in the process, an

understanding of some aspects of real functions). Several different notions of

positivity in analysis, studied for classical and modern reasons, are touched

upon in the text:

• Positive semidefinite and positive definite matrices.

• Entrywise positive matrices.

• A common strengthening of the first two notions, which involves totally

positive (TP) and totally nonnegative (TN) matrices.

• Settings somewhat outside matrix theory. For instance, consider discrete

data associated with positive measures on locally compact abelian groups

G. E.g., for G = R, one obtains moment-sequences, which are intimately

related to positive semidefinite Hankel matrices. For G = S1, the circle

group, one obtains Fourier–Stieltjes sequences, which are connected to

positive semidefinite Toeplitz matrices. (See works of Carathéodory,

Hamburger, Hausdorff, Herglotz, and Stieltjes, among others.)

• More classically, functions and kernels with positivity structures have long

been studied in analysis, including on locally compact groups and metric

spaces (see Bochner, Schoenberg, von Neumann, Pólya, etc.). These include

positive definite functions and Pólya frequency functions and sequences.

xvii
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The text begins by discussing positive semidefinite and T N matrices and

some of their basic properties, followed by some of the early results on

preservers of positive semidefiniteness. The next two parts then study, in detail,

classical and modern results on entrywise positivity preservers in fixed and all

dimensions. Among other things, this journey involves going through many

beautiful classical results by leading experts in analysis during the first half of

the twentieth century.

The purpose of this text is to study the post-composition transforms that

preserve positivity on various classes of kernels. When the kernel has finite

domain – i.e., is a matrix, as is the case in most of this book – then this

amounts to studying entrywise preservers of various notions of positivity.

The question of why this entrywise calculus was studied – as compared to

the usual holomorphic functional calculus – has a rich and classical history

in the analysis literature, beginning with the work of Schoenberg, Rudin,

Loewner, and Horn (these results are proved in Part II of the text), but

also drawing upon earlier works of Menger, Schur, Bochner, and others.

(In fact, the entrywise calculus was introduced, and the first such result

proved, by Schur in 1911.) Interestingly, this entrywise calculus also arises

in modern-day applications from high-dimensional covariance estimation; we

elaborate on this in Section 7.1, and briefly also in Chapter 8. Furthermore,

this evergreen area of mathematics continues to be studied in the literature,

drawing techniques from – and also contributing to – symmetric function

theory, statistics and graphical models, combinatorics, and linear algebra (in

addition to analysis).

As a historical curiosity, the course and this text arose in a sense out of

research carried out in significant measure by mathematicians at Stanford

University (including their students) over the years. This includes Loewner,

Karlin, and their students FitzGerald, Horn, Micchelli, and Pinkus. Less

directly, there was also Katznelson, who had previously worked with Helson,

Kahane, and Rudin, leading to Rudin’s strengthening of Schoenberg’s theorem.

(Coincidentally, Pólya and Szegő, who made the original observation on

entrywise preservers of positivity using the Schur product theorem, were

again colleagues at Stanford.) On a personal note, the author’s contributions

to this area also have their origins in his time spent at Stanford University,

collaborating with Alexander Belton, Dominique Guillot, Mihai Putinar, Bala

Rajaratnam, and Terence Tao (though the collaboration with the last-named

colleague was carried out almost entirely at IISc).

We now discuss the course, the notes that led to this text, and their

mathematical contents. The notes were scribed by the students taking the
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Preface xix

course in Spring 2018 at IISc, followed by extensive “homogenization” by

the author – and, in several chapters, addition of material. Each chapter

was originally intended to cover the notes of roughly one 90-minute lecture,

or occasionally two; that said, some material has subsequently been moved

around for logical, mathematical, and expositional reasons. The notes, and the

course itself, require an understanding of basic linear algebra and analysis,

with a bit of measure theory as well. Beyond these basic topics, we have tried

to keep these notes as self-contained as possible, with full proofs. To that end,

we have included proofs of “preliminary” results, including:

(i) results of Schoenberg, Menger, von Neumann, Fréchet, and others

connecting metric geometry and positive definite functions to matrix

positivity;

(ii) results in Euclidean geometry (including on triangulation), Heron’s

formula for triangles, and linking Cayley–Menger matrices to

simplicial volumes;

(iii) results of Boas–Widder and Bernstein on functions with positive

differences;

(iv) Sierpińsky’s result: midconvexity and measurability imply continuity;

(v) an extension to normed linear spaces, of (a special case of) a classical

result of Ostrowski on midconvexity and local boundedness implying

continuity;

(vi) Descartes’ rule of signs;

(vii) Fekete’s result on T P matrices via positive contiguous minors;

(viii) Sylvester’s criterion and the Schur product theorem for positive definite

and semidefinite matrices (also, the Jacobi formula);

(ix) the Rayleigh–Ritz theorem;

(x) a special case of Weyl’s inequality on eigenvalues;

(xi) the Cauchy–Binet formula and a continuous generalization;

(xii) the discreteness of zeros of real analytic functions (and a sketch of the

continuity of roots of complex polynomials); and

(xiii) the equivalence of Cauchy’s and Littlewood’s definitions of Schur

polynomials (and of the Jacobi–Trudi and von Nägelsbach–Kostka

identities) via Lindstr̈om–Gessel–Viennot bijections.

As the reader will notice, the exposition herein has left out some proofs.

These include proofs of theorems by Hamburger/Hausdorff/Stieltjes, Fubini,

Tonelli, Cauchy, Montel, and Morera; a Schur positivity phenomenon for ratios

of Schur polynomials; Lebesgue’s dominated convergence theorem; as well as

the closure of real analytic functions under composition. Most of these can be
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xx Preface

found in standard textbooks in mathematics. Nevertheless, as the previous and

current paragraphs indicate, these notes cover many classical results by past

experts and acquaint the reader with a variety of tools in analysis (especially

the study of real functions) and in matrix theory – many of these tools are not

found in more “traditional” courses on these subjects.

This text is broadly divided into three parts, each with detailed bibliographic

notes (these are given at the end of the text). In Part I, the key objects of

interest – positive semidefinite and Hankel T N matrices – are introduced

via basic results and important classes of examples. We then begin the study

of functions acting entrywise on such matrices and preserving the relevant

notion of positivity. Here, we will mostly restrict ourselves to studying power

functions that act on various sets of matrices of a fixed size. This is a long-

studied question, including by Bhatia, Elsner, Fallat, FitzGerald, Hiai, Horn,

Jain, Johnson, Sokal, and the author together with Guillot and Rajaratnam. An

interesting highlight is a construction by Jain of individual (pairs of) matrices,

which encode the entire set of entrywise powers preserving Loewner positivity,

monotonicity, and convexity. We also obtain certain necessary conditions on

general entrywise functions that preserve positivity, including multiplicative

midconvexity and continuity. We explain some of the modern motivations to

study entrywise preservers, and we end with some unsolved problems.

Part II deals with the foundational results on matrix positivity preservers.

We begin with the early history – including related work by Menger, Fréchet,

Bochner, and Schoenberg. We then classify the entrywise functions that

preserve positive semidefiniteness (= positivity) in all dimensions, or total

nonnegativity on Hankel matrices of all sizes. This is a celebrated result of

Schoenberg – later strengthened by Rudin – which is a converse to the Schur

product theorem, and we prove a stronger version by using a rank-constrained

test set. The proof here is different from previous approaches of Schoenberg

and Rudin, is essentially self-contained, and uses relatively less sophisticated

machinery compared to the works of Schoenberg and Rudin. Moreover, it

also proves a variant by Vasudeva for matrices with only positive entries,

and it lends itself to a multivariate generalization (which will not be covered

here). The starting point of these proofs is a necessary condition for entrywise

preservers in a fixed dimension, proved by Loewner (and Horn) in the late

1960s. To this day, this result remains essentially the only known condition

in a fixed dimension n ≥ 3, and a proof of a (rank-constrained, as above)

stronger version is also provided in these notes. In addition to techniques and

ingredients introduced by the above authors, the text also borrows from the

author’s joint work with Belton, Guillot, and Putinar.
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Following this development, this part of the text ends with several related

results and follow-ups:

(i) Chapters 18 and 19 classify “dimension-free” preservers of Loewner

positivity, monotonicity, and convexity (on kernels over infinite

domains).

(ii) We next cover – in Chapter 20 – recent work by Vishwakarma on an

“off-diagonal” variant of the positivity preserver problem.

(iii) Chapter 21 covers a result by Boas and Widder, which shows a converse

“mean value theorem” for divided differences.

(iv) Finally, Chapter 22 explores the theme of Euclidean distance geometry,

with a focus on some classical results by Menger.

The final Part III can be read directly following Chapter 5 and the statements

of Theorems 11.2 and 12.1. Part III deals with entrywise functions preserving

positivity in a fixed dimension. This is a challenging problem – it is still open in

general, even for 3×3 matrices – and we restrict the discussion here to studying

polynomial preservers. According to the Schur product theorem (1911), if the

polynomial has all nonnegative coefficients, then it is at once a preserver; but,

interestingly, until 2016 not a single other example was known in any fixed

dimension n ≥ 3. Very recently, this question has been answered to some

degree of satisfaction by the author, in collaboration first with Belton, Guillot,

and Putinar, and subsequently with Tao. The text ends by covering some of

this recent progress, and it comes back full circle to Schur through symmetric

function theory.

Also in this text, historical notes and further questions serve to acquaint

the reader with past work(er)s, related areas, and possible avenues for future

work – and can be accessed from the Index. See also the Exercises after each

part of the text, and the Bibliographic Notes and References at the end of the

text. The former include additional results not covered in the course or this text.

To conclude, thanks are owed to the scribes, as well as to Alexander

Belton, Shabarish Chenakkod, Projesh Nath Choudhury, Julian R. D’Costa,

Dominique Guillot, Prakhar Gupta, Roger A. Horn, Sarvesh Ravichandran

Iyer, Poornendu Kumar, Frank Oertel, Aaradhya Pandey, Vamsi Pritham

Pingali, Mihai Putinar, Shubham Rastogi, Aditya Guha Roy, Kartik Singh,

G. V. Krishna Teja, Raghavendra Tripathi, Prateek Kumar Vishwakarma, and

Pranjal Warade for helpful suggestions that improved the text. I am, of course,

deeply indebted to my collaborators for their support and all of their research

efforts in positivity – but also for many stimulating discussions, which helped

shape my thinking about the field as a whole and the structure of this text
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in particular. I am also grateful to the University Grants Commission (UGC,

Government of India), the Science and Engineering Research Board (SERB)

and the Department of Science and Technology (DST) of the Government

of India, the Infosys Foundation, and the Tata Trusts – for their support

through a CAS-II grant, through a MATRICS grant and the Ramanujan and

Swarnajayanti Fellowships, through a Young Investigator Award, and through

their Travel Grants, respectively.

Finally, I thank my family for their constant support, encouragement, and

patience during the writing of this book.
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