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PRELIMINARIES: ENTRYWISE

POWERS PRESERVING POSITIVITY

IN A FIXED DIMENSION
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1

The Cone of Positive Semidefinite Matrices

A kernel is a function K : X × Y → R. Broadly speaking, the goal of this text

is to understand:

Which functions F : R → R, when applied to kernels that are positive

semidefinite, preserve that notion?

To do so, we first study the test sets of such kernels K themselves, and then

the post-composition operators F that preserve these test sets. We begin by

understanding such kernels when the domains X,Y are finite, i.e., matrices.

In this text, we will assume familiarity with linear algebra and a first course

in calculus/analysis. To set notation: an uppercase letter with a two-integer

subscript (such as Am×n) represents a matrix with m rows and n columns. If

m,n are clear from context or unimportant, then they will be omitted. Three

examples of real matrices are 0m×n,1m×n, Idn×n, which are the (rectangular)

matrix consisting of all zeros, all ones, and the identity matrix, respectively.

The entries of a matrix A will be denoted aij,ajk , etc. Vectors are denoted

by lowercase letters (occasionally in bold) and are columnar in nature. All

matrices, unless specified otherwise, are real; and similarly, all functions,

unless specified otherwise, are defined on – and take values in – Rm for some

m ≥ 1. As is standard, we let C, R, Q, Z, N denote the complex numbers,

reals, rationals, integers, and positive integers respectively. Given S ⊂ R, let

S≥0 := S ∩ [0,∞).

1.1 Preliminaries

We begin with several basic definitions.

Definition 1.1 A matrix An×n is said to be symmetric if ajk = akj for all

1 ≤ j,k ≤ n. A real symmetric matrix An×n is said to be positive semidefinite
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4 1 The Cone of Positive Semidefinite Matrices

if the real number xT Ax is nonnegative for all x ∈ Rn – in other words, the

quadratic form given by A is positive semidefinite. If, furthermore, xT Ax > 0

for all x � 0 then A is said to be positive definite. Denote the set of (real

symmetric) positive semidefinite matrices by Pn.

We state the spectral theorem for symmetric (i.e., self-adjoint) operators

without proof.

Theorem 1.2 (Spectral theorem for symmetric matrices) For An×n a real

symmetric matrix, A = UT DU for some orthogonal matrix U (i.e., UT U =
Id) and real diagonal matrix D. D contains all the eigenvalues of A (counting

multiplicities) along its diagonal.

As a consequence, A =
∑n

j=1 λjvjv
T
j , where each vj is an eigenvector for

A with real eigenvalue λj , and the vj (which are the columns of UT ) form an

orthonormal basis of Rn.

We also have the following related results, stated here without proof:

the spectral theorem for two commuting matrices, and the singular value

decomposition.

Theorem 1.3 (Spectral theorem for commuting symmetric matrices) Let

An×n and Bn×n be two commuting real symmetric matrices. Then A and B

are simultaneously diagonalizable, i.e., for some common orthogonal matrix

U , A = UT D1U and B = UT D2U for D1 and D2 diagonal matrices (whose

diagonal entries comprise the eigenvalues of A,B respectively).

Theorem 1.4 (Singular value decomposition) Every real matrix Am×n � 0

decomposes as A = Pm×m

(

�r 0

0 0

)

m×n

Qn×n, where P,Q are orthogonal

and �r is a diagonal matrix with positive eigenvalues. The entries of �r

are called the singular values of A and are the square roots of the nonzero

eigenvalues of AAT (or AT A).

1.2 Criteria for Positive (Semi)Definiteness

We write down several equivalent criteria for positive (semi)definiteness. There

are three initial criteria which are easy to prove, and a final criterion which

requires separate treatment.

Theorem 1.5 (Criteria for positive (semi)definiteness) Given An×n a real

symmetric matrix of rank 0 ≤ r ≤ n, the following are equivalent:
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1.2 Criteria for Positive (Semi)Definiteness 5

(1) A is positive semidefinite (respectively, positive definite).

(2) All eigenvalues of A are nonnegative (respectively, positive).

(3) There exists a matrix B ∈ Rr×n of rank r , such that BT B = A. (In

particular, if A is positive definite then B is square and nonsingular.)

Proof We prove only the positive semidefinite statements; minor changes

show the corresponding positive definite variants. If (1) holds and λ is an eigen-

value – for an eigenvector x – then xT Ax = λ‖x‖2 ≥ 0. Hence, λ ≥ 0, prov-

ing (2). Conversely, if (2) holds then by the spectral theorem, A=
∑

j λjvjv
T
j

with all λj ≥ 0, so A is positive semidefinite:

xT Ax =
∑

j

λjx
T vjv

T
j x =

∑

j

λj (x
T vj )

2 ≥ 0, ∀x ∈ Rn.

Next, if (1) holds then write A = UT DU by the spectral theorem; note

that D = UAUT has the same rank as A. Since D has nonnegative diagonal

entries djj , it has a square root
√

D, which is a diagonal matrix with

diagonal entries
√

djj . Write D =
(

D′
r×r 0

0 0(n−r)×(n−r)

)

, where D′ is a

diagonal matrix with positive diagonal entries. Correspondingly, write U =
(

Pr×r Q

R S(n−r)×(n−r)

)

. If we set B := (
√

D′P |
√

D′Q)r×n, then it is easily

verified that

BT B =
(

P T D′P P T D′Q

QT D′P QT D′Q

)

= UT DU = A.

Hence, (1) ⇒ (3). Conversely, if (3) holds then xT Ax = ‖Bx‖2 ≥ 0 for

all x ∈ Rn. Hence, A is positive semidefinite. Moreover, we claim that B and

BT B have the same null space and hence the same rank. Indeed, if Bx = 0

then BT Bx = 0, while

BT Bx = 0 ⇒ xT BT Bx = 0 ⇒ ‖Bx‖2 = 0 ⇒ Bx = 0. �

Corollary 1.6 For any real symmetric matrix An×n, the matrix A −
λmin Idn×n is positive semidefinite, where λmin denotes the smallest eigenvalue

of A.

We now state Sylvester’s criterion for positive (semi)definiteness. (Inci-

dentally, Sylvester is believed to have first introduced the use of “matrix”

in mathematics, in the nineteenth century.) This requires some additional

notation.

Definition 1.7 Given an integer n≥ 1, define [n] := {1, . . . ,n}. Now given a

matrix Am×n and subsets J ⊂ [m],K ⊂ [n], define AJ×K to be the submatrix
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6 1 The Cone of Positive Semidefinite Matrices

of A with entries ajk for j ∈ J,k ∈ K (always considered to be arranged

in increasing order in this text). If J,K have the same size then det AJ×K is

called a minor of A. If A is square and J = K then AJ×K is called a principal

submatrix of A, and det AJ×K is a principal minor. The principal submatrix

(and principal minor) are leading if J = K = {1, . . . , m} for some 1 ≤ m ≤ n.

Theorem 1.8 (Sylvester’s criterion) A symmetric matrix is positive semidef-

inite (respectively, positive definite) if and only if all its principal minors are

nonnegative (respectively, positive).

We will show Theorem 1.8 with the help of a few preliminary results.

Lemma 1.9 If An×n is a positive semidefinite (respectively, positive definite)

matrix, then so are all principal submatrices of A.

Proof Fix a subset J ⊂ [n] = {1, . . . ,n} (so B := AJ×J is the correspond-

ing principal submatrix of A), and let x ∈ R|J |. Define x′ ∈ Rn to be the

vector, such that x′
j = xj for all j ∈ J and 0 otherwise. It is easy to see that

xT Bx = (x′)T Ax′. Hence, B is positive (semi)definite if A is. �

As a corollary, all the principal minors of a positive semidefinite (positive

definite) matrix are nonnegative (positive) since the corresponding principal

submatrices have nonnegative (positive) eigenvalues and hence nonnegative

(positive) determinants. So one direction of Sylvester’s criterion holds trivially.

Lemma 1.10 Sylvester’s criterion is true for positive definite matrices.

Proof We induct on the dimension of the matrix A. Suppose n = 1. Then A

is just an ordinary real number, so its only principal minor is A itself, and so

the result is trivial.

Now, suppose the result is true for matrices of dimension ≤ n − 1. We claim

that A has at least n − 1 positive eigenvalues. To see this, let λ1,λ2 ≤ 0 be

eigenvalues of A. Let W be the n − 1 dimensional subspace of Rn with last

entry 0. If vj are orthogonal eigenvectors for λj , j = 1,2, then the span of

the vj must intersect W nontrivially, since the sum of dimensions of these two

subspaces of Rn exceeds n. Define u := c1v1 + c2v2 ∈ W ; then uT Au > 0 by

Lemma 1.9. However,

uT Au =
(

c1v
T
1 + c2v

T
2

)

A(c1v1 + c2v2) = c2
1λ1||v1||2 + c2

2λ2||v2||2 ≤ 0,

thereby giving a contradiction and proving the claim.

Now since the determinant of A is positive (it is the minor corresponding to

A itself), it follows that all eigenvalues are positive, completing the proof. �
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1.2 Criteria for Positive (Semi)Definiteness 7

We will now prove the Jacobi formula, an important result in its own right.

A corollary of this result will be used, along with the previous result and the

idea that positive semidefinite matrices can be expressed as entrywise limits

of positive definite matrices, to prove Sylvester’s criterion for all positive

semidefinite matrices.

Theorem 1.11 (Jacobi formula) Let At : R → Rn×n be a matrix-valued

differentiable function. Then,

d

dt
(det At ) = tr

(

adj(At )
dAt

dt

)

, (1.1)

where adj(At ) denotes the adjugate matrix of At .

Proof The first step is to compute the differential of the determinant. We

claim that for any n × n real matrices A,B,

d(det)(A)(B) = tr(adj(A)B).

As a special case, at A = Idn×n, the differential of the determinant is precisely

the trace.

To show the claim, we need to compute the directional derivative

lim
ǫ→0

det(A + ǫB) − det A

ǫ
.

The fraction is a polynomial in ǫ with vanishing constant term (e.g., set ǫ = 0

to see this); and we need to compute the coefficient of the linear term. Expand

det(A + ǫB) using the Laplace expansion as a sum over permutations σ ∈ Sn;

now each individual summand (−1)σ
∏n

k=1(akσ(k) + ǫbkσ(k)) splits as a sum

of 2n terms. (It may be illustrative to try and work out the n = 3 case by hand.)

From these 2n · n! terms, choose the ones that are linear in ǫ. For each 1 ≤ i,

j ≤ n, there are precisely (n − 1)! terms corresponding to ǫbij ; and added

together, they equal the (i,j)th cofactor Cij of A – which equals adj(A)j i .

Thus, the coefficient of ǫ is

d(det)(A)(B) =
n

∑

i,j=1

Cijbij,

and this is precisely tr(adj(A)B), as claimed.

More generally, the above argument shows that if B(ǫ) is any family of

matrices, with limit B(0) as ǫ → 0, then

lim
ǫ→0

det(A + ǫB(ǫ)) − det A

ǫ
= tr(adj(A)B(0)). (1.2)

www.cambridge.org/9781108792042
www.cambridge.org


Cambridge University Press
978-1-108-79204-2 — Matrix Analysis and Entrywise Positivity Preservers
Apoorva Khare 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 1 The Cone of Positive Semidefinite Matrices

Returning to the proof of the theorem, for ǫ ∈ R small and t ∈ R we write

At+ǫ = At + ǫB(ǫ),

where B(ǫ) → B(0) := dAt

dt
as ǫ → 0, by definition. Now compute using (1.2)

d

dt
(det At ) = lim

ǫ→0

det(At + ǫB(ǫ)) − det At

ǫ
= tr

(

adj(At )
dAt

dt

)

.
�

With these results at hand, we can finish the proof of Sylvester’s criterion

for positive semidefinite matrices.

Proof of Theorem 1.8 For positive definite matrices, the result was proved

in Lemma 1.10. Now suppose An×n is positive semidefinite. One direction

follows by the remarks preceding Lemma 1.10. We show the converse by

induction on n, with an easy argument for n = 1 similar to the positive definite

case.

Now suppose the result holds for matrices of dimension ≤ n − 1 and let

An×n have all principal minors nonnegative. Let B be any principal submatrix

of A, and define f (t) := det(B + t Idn×n). Note that f ′(t) = tr(adj(B +
t Idn×n)) by the Jacobi formula (1.1).

We claim that f ′(t) > 0 ∀t > 0. Indeed, each diagonal entry of adj(B +
t Idn×n) is a proper principal minor of A + t Idn×n, which is positive definite

since xT (A + t Idn×n)x = xT Ax + t‖x‖2 for x ∈ Rn. The claim now follows

using Lemma 1.9 and the induction hypothesis.

The claim implies: f (t) > f (0) = det B ≥ 0 ∀t > 0. Thus, all principal

minors of A + tI are positive, and by Sylvester’s criterion for positive definite

matrices, A + tI is positive definite for all t > 0. Now note that xT Ax =
limt→0+ xT (A + t Idn×n)x; therefore the nonnegativity of the right-hand side

implies that of the left-hand side for all x ∈ Rn, completing the proof. �

1.3 Examples of Positive Semidefinite Matrices

We next discuss several examples of positive semidefinite matrices.

1.3.1 Gram Matrices

Definition 1.12 For any finite set of vectors x1, . . . ,xn ∈ Rm, their Gram

matrix is given by Gram((xj )j ) := (〈xj,xk〉)1≤j,k≤n.
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1.3 Examples of Positive Semidefinite Matrices 9

A correlation matrix is a positive semidefinite matrix with ones on the

diagonal.

In fact, we need not use Rm here; any inner product space/Hilbert space is

sufficient.

Proposition 1.13 Given a real symmetric matrix An×n, it is positive

semidefinite if and only if there exist an integer m > 0 and vectors x1, . . . ,xn ∈
Rm, such that A = Gram((xj )j ).

As a special case, correlation matrices precisely correspond to those Gram

matrices for which the xj are unit vectors. We also remark that a “continuous”

version of this result is given by a well-known result of Mercer [172].

Proof If A is positive semidefinite, then by Theorem 1.5 we can write

A = BT B for some matrix Bm×n. It is now easy to check that A is the Gram

matrix of the columns of B.

Conversely, if A = Gram(x1, . . . ,xn) with all xj ∈ Rm, then to show that

A is positive semidefinite, we compute for any u = (u1, . . . ,un)
T ∈ Rn

uT Au =
n

∑

j,k=1

ujuk〈xj,xk〉 =

∥

∥

∥

∥

∥

∥

n
∑

j=1

uj xj

∥

∥

∥

∥

∥

∥

2

≥ 0. �

1.3.2 (Toeplitz) Cosine Matrices

Definition 1.14 A matrix A = (ajk) is Toeplitz if ajk depends only on j −k.

Lemma 1.15 Let θ1, . . . ,θn ∈ [0,2π ]. Then the matrix C := (cos(θj −
θk))

n
j,k=1 is positive semidefinite, with rank at most 2. In particular, α1n×n +

βC has rank at most 3 (for scalars α,β), and it is positive semidefinite if α,

β ≥ 0.

Proof Define the vectors u,v ∈ Rn via: uT = (cos θ1, . . . , cos θn), vT =
(sin θ1, . . . , sin θn). Then C = uuT + vvT via the identity cos(a − b)=
cos a cos b + sin a sin b, and clearly the rank of C is at most 2. (For instance, it

can have rank 1 if the θj are equal.) As a consequence,

α1n×n + βC = α1n1T
n + βuuT + βvvT

has rank at most 3; the final assertion is straightforward. �

As a special case, if θ1, . . . ,θn are in arithmetic progression, i.e., θj+1 −
θj = θ ∀j for some θ , then we obtain a positive semidefinite Toeplitz matrix
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10 1 The Cone of Positive Semidefinite Matrices

C =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 cos θ cos 2θ · · ·
cos θ 1 cos θ cos 2θ · · ·
cos 2θ cos θ 1 cos θ cos 2θ · · ·

cos 2θ cos θ 1 cos θ cos 2θ · · ·
...

. . .
. . .

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

This family of Toeplitz matrices was used by Rudin in a 1959 paper [197] on

entrywise positivity preservers; see Theorem 11.3 for his result.

1.3.3 Hankel Matrices

Definition 1.16 A matrix A = (ajk) is Hankel if ajk depends only on j +k.

Example 1.17

(

0 1

1 0

)

is Hankel but not positive semidefinite.

Example 1.18 For x ≥ 0, the matrix

⎛

⎝

1 x x2

x x2 x3

x2 x3 x4

⎞

⎠ =

⎛

⎝

1

x

x2

⎞

⎠

(

1 x x2
)

is

Hankel and positive semidefinite of rank 1.

A more general perspective is as follows. Define

Hx :=

⎛

⎜

⎜

⎜

⎝

1 x x2 · · ·
x x2 x3 · · ·
x2 x3 x4 · · ·
...

...
...

. . .

⎞

⎟

⎟

⎟

⎠

,

and let δx be the Dirac measure at x ∈ R. The moments of this measure are

given by

sk(δx) :=
∫

R

yk dδx(y) = xk, k ≥ 0.

Thus, Hx is the “moment matrix” of δx . More generally, given any nonnegative

measure μ supported on R, with all moments finite, the corresponding Hankel

moment matrix is the bi-infinite “matrix” given by

Hμ :=

⎛

⎜

⎜

⎜

⎝

s0 s1 s2 · · ·
s1 s2 s3 · · ·
s2 s3 s4 · · ·
...

...
...

. . .

⎞

⎟

⎟

⎟

⎠

, where sk = sk(μ) :=
∫

R

yk dμ(y). (1.3)
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