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1 From Networks to Maps
Throughout history, maps have been at the center of political, economic, and
geostrategic decisions and have become a critical piece of our everyday lives,
serving as a precise and relevant information source. Maps provide an accurate
way of visualizing, storing, and communicating information, help to recognize
locational distributions, spatial patterns, and relationships, and allow us to track
processes that operate through space at different length scales. Our work in the
last decade led us to prove that many real complex networks are natural geomet-
ric objects and can be mapped into hidden low-dimensional metric spaces with
hyperbolic geometry, where distances determine the likelihood of the interac-
tions and encode the different intrinsic attributes determining how similar the
elements of the system are (Allard et al. [2017]; Boguñá, Papadopoulos, and
Krioukov [2010]; García-Pérez et al. [2016]; García-Pérez, Boguñá, and Ser-
rano [2018]; Kleineberg et al. [2016]; Krioukov et al. [2012]; Krioukov et al.
[2010]; Papadopoulos et al. [2012]; Serrano, Boguñá, and Sagues [2012]; Ser-
rano, Krioukov, and Boguñá [2008]). We took advantage of the large amount
of empirical data available and the current explosion in computing power to
create meaningful geometric maps of large real networks by embedding them
in an underlying space that ought not to be geographical or spatially obvious.
In this Element, we review our most relevant research on this topic, with a spe-
cial focus on models and applications to real networks. These results triggered
the field of network geometry to become one of the fundamental areas within
network science devoted to the discovery and modeling of nontrivial geometric
properties of complex networks (Boguñá et al. [2020]).

Complex networks typically have been studied as topological objects (Doro-
govtsev and Mendes [2003]; M. E. J. Newman [2010]), graphs where elements
are represented as nodes and their interactions as links. Graphs of real net-
works are not regular lattices nor are they completely disordered or random,
and their structure is imprinted with universal features. One of the most par-
adigmatic examples is the small-world phenomenon, connecting every pair
of nodes in a network, on average, by a small number of intermediate links
(Amaral et al. [2000]; Watts and Strogatz [1998]). Other ubiquitous proper-
ties are scale-free, or heavy tailed, distributions of the number of connections
per node (degree) (Barabási and Albert [1999]), with a few nodes linked to an
enormous number of neighbors (hubs with very high degrees, while most other
nodes are poorly connected), modularity, and hierarchical structure (Amaral
[2008]). These and other prevalent features are not a mere curiosity but arise
as the outcome of evolutionary pressures or functional needs and affect the
dynamics that characterize or take place within and between networks (Barrat,
Barthélemy, and Vespignani [2008]).
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2 The Structure and Dynamics of Complex Networks
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Figure 1 Hidden metric spaces help to understand the structure and
function of complex networks. The smaller the distance between two nodes
in the hidden metric space – the more similar they are – the more likely they
are connected in the observable network topology. If node A is close to node

B, and B is close to C, then A and C are necessarily close because of the
triangle inequality in the metric space. Therefore, triangle ABC exists in the
network topology with high probability, which explains the strong clustering

observed in real complex networks.

One of the main consequences of the small-world effect is the apparent
lack of a metric structure defined on the system. Certainly, in a small-world
network, the distribution of shortest path lengths among pairs of nodes is
sharply peaked around its average and, therefore, any pair of nodes is roughly
separated by the same minimal number of intermediate links. This is the rea-
son why complex networks are often considered as pure topological objects
and are difficult to map. Yet, many networks are embedded in metric spaces.
Some are explicit (Barthélemy [2011]) – like in airport networks (Barrat et al.
[2004]; Guimerà et al. [2005]), power grids, or urban networks – whereas
some are hidden yet shaping the network topological structure (Boguñá et al.
[2010]; Krioukov et al. [2010]; Krioukov et al. [2009]; Serrano et al. [2008]);
see Figure 1. This idea led to hidden metric space models of complex net-
works with an underlying effective hyperbolic geometry. These models are
able to explain universal features observed in real-world systems, includ-
ing the small-world property, scale-free degree distributions, clustering, and
also fundamental mechanisms like preferential attachment in growing net-
works (Papadopoulos et al. [2012]), the emergence of communities (Zuev
et al. [2015]), and multiscale self-similarity (García-Pérez, Boguñá, and Ser-
rano [2018]). The discovery of the hidden geometry of real complex networks
led to the emergence of the field of network geometry (Boguñá et al. [2020]),
a major research area within network science.
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The hidden metric space network models of complex networks couple their
topology to an underlying geometry through a probabilistic connectivity law
depending on distances in the space, which combine popularity and simi-
larity dimensions in such a way that more popular and similar nodes have
more chance to interact (Krioukov et al. [2010]; Papadopoulos et al. [2012];
Serrano et al. [2008]). The basic assumptions in our model are that there
exists some similarity between nodes which, along degrees, plays an important
role in how connections are established and that, since similarity is transi-
tive, geometry is an appropriate mathematical formalism to encode it. The
clue for the connection between topology and geometry is then clustering –
transitive relationships, or triangles – which arises as a reflection in the topol-
ogy of the network of the triangle inequality in the underlying hidden metric
space. These models can be combined with statistical inference techniques to
find the coordinates of the nodes in the underlying metric space that maximize
the likelihood that the topology of the network is reproduced by the model
(Blasius et al. [2018]; Boguñá et al. [2010]; García-Pérez et al. [2019];
Papadopoulos, Aldecoa, and Krioukov [2015]). One of the key properties of
these maps is that the shortest paths in the topology of the networks follow
closely geodesic lines in the underlying space. This ensures that networks
highly congruent with the hidden metric space model are navigable, where nav-
igability is understood as efficient routing of information based on the metric
embedding (Allard and Serrano [2020]; Boguñá and Krioukov [2009]; Boguñá
Krioukov, and Claffy [2009]; Boguñá et al. [2010]; Gulyás et al. [2015];
Krioukov et al. [2010]; Papadopoulos et al. [2010]).

One example of the power of this geometric approach is the discovery of the
hyperbolic plane as the effective geometry of many real networks (see Fig. 2),
including such disparate systems as the Internet at the Autonomous Systems
level (Boguñá, Papadopoulos, and Krioukov [2010]), genome-scale reconstruc-
tions of metabolic networks in the cell (Serrano et al. [2012]), the World Trade
Web from 1870 to 2013 (García-Pérez et al. [2016]), and brains of different spe-
cies (Allard and Serrano [2020]). In the case of the Internet, the metric space
provides a solution to the scalability limitations of current inter-domain rout-
ing protocols. For metabolic networks, it allows us to redefine the concept of
biological pathways and to quantify their crosstalk. In international trade, the
maps provide information about the long-term evolution of the system, unrav-
eling the role of globalization, hierarchization, and localization forces. Finally,
the effective geometry of human and nonhuman brain structures is also better
described as hyperbolic than Euclidean, thus implying that hyperbolic embed-
dings are universal and meaningful maps of brain structure that allow for an
efficient routing of information.
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These results suggest that the geometric paradigm improves our knowledge
of the basic principles underlying the organization, function, and evolution of
complex systems. But, in the long run, it also will transform research on how to
model, predict, and control them, with potential implications for a large num-
ber of current challenges. These include efficient recommendation systems and
search engines, prediction of epidemic spreading, and drug design in cancer and
brain research.

2 Geometric Models for Static Topologies
Our first remarkable observation was to identify clustering – a measure of the
number of triangles in a graph – as the key connection between complex net-
works and an underlying hidden geometry. Indeed, the triangle inequality in
a metric space induces clustering in the structure of the graph, as illustrated
in Figure 1. In Serrano et al. (2008), we analyzed the clustering coefficient of
several real complex networks and found that their topological structure was
compatible with an underlying hidden metric space. This finding led us to intro-
duce the S

1 class of network models (Serrano et al. [2008]). In these models,
nodes are embedded in a metric space and connections exist with a gravity-
law-like connection probability balancing the distance between nodes and their
degrees; see Figure 3a. The connection probability encodes, in a simple and
general way, the two major forces at play, namely, the effect of a similarity
distance and the effect of the importance of the nodes involved in the connec-
tions. In this way, the model is able to generate scale-free, small-world, and
clustered graphs very similar to those found in real complex networks, where
the heterogeneity in the distribution of the number of contacts per node can be
controlled independently of the level of clustering that measures the coupling
with the metric space.

The S
1 model is a mixed model in the sense that it combines a metric

component and a topological component. Nodes are given coordinates in a
metric similarity space but are also given degrees, determining their number
of neighbors. At first glance, it seems difficult to combine, in a purely geo-
metric framework, the small-world and scale-free properties that we observe
in real networks. The major complication arises as a consequence of the small-
world effect. This effect implies an exponential expansion of space, that is, the
number of nodes within a disk of a certain radius grows exponentially with the
radius (up to the finite size of the system). This behavior is in stark contrast
to what happens in Euclidean spaces, where space grows as a power of the
radius, but it is similar to what happens in hyperbolic geometry. In Krioukov
et al. (2009, 2010), we developed the theory of random geometric graphs in
hyperbolic geometry; see Figure 3b. Interestingly, scale-free graphs are the
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6 The Structure and Dynamics of Complex Networks

Figure 3 (a) Model S
1. The similarity distances da between pairs of nodes

A1-A2, B1-B2, and C1-C2 have been highlighted. The size of a node is
proportional to its hidden degree �. (b) Model H

2 in the hyperbolic plane.
Nodes in the different pairs are separated by the same hyperbolic distance.

Nodes are equally sized, but nodes with higher hidden degree are positioned
closer to the center. The similarity distance is the same in the two

representations.

Source: Modified from the Supplementary Information in García-Pérez et al. [2016].

natural outcome of the formalism, indicating that this geometry is the most
appropriate to model complex networks. Indeed, it produces in a natural way
scale-free, small-world, and clustered graphs. However, the most surprising
result is that this class of models, which we call H

2, is isomorphic to our
previous S

1 version (Krioukov et al. [2010]; Serrano et al. [2008]).
This duality allows us to use either model indistinctly, depending on the

particular application. The S
1 version is especially convenient for theory

development, analytical calculations, and the implementation of embedding
techniques – which estimate the coordinates that maximize the likelihood of the
observed structure being produced by the model. Instead, the H

2 version is well
suited for visualization purposes, to analyze navigation properties (Allard and
Serrano [2020]; Boguñá and Krioukov [2009]; Boguñá et al. [2009]; Boguñá
et al. [2010]; Gulyás et al. [2015]; Krioukov et al. [2010]; Papadopoulos et al.
[2010]), or to define hierarchies within the network (García-Pérez et al. [2016]).

An interesting aspect is that our geometric class of models corresponds
to an entropy-maximizing probabilistic mixture of grand canonical network
ensembles, where network links can be thought of as noninteracting fermions
whose energies depend on distances on the underlying geometry, with the
particular choice of the functional form of this dependency defining network
properties. At present, these models provide the simplest class of models
capturing sparsity, the small-world property, power-law degree distributions,
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The Shortest Path to Network Geometry 7

and nonvanishing clustering in a geometric framework with explicit symmetry
structure (Boguñá et al. [2020]).

2.1 The S
1 Model

In the S
1 model (Serrano et al. [2008]), a node i is assigned two hidden vari-

ables: a hidden degree �i quantifying its popularity; and an angular position �i

in a one-dimensional sphere (or circle), the similarity space, where distances
with the other nodes serve as a proxy for their similarity. The radius of the
circle is adjusted to R D N=2� , where N is the number of nodes, so that the
density is set to 1 without loss of generality. The probability of connection
between any pair of nodes takes the form of a gravity law, whose magnitude
increases with the product of the hidden degrees (i.e., their combined popular-
ities) and decreases with the angular distance between the two nodes. In other
words, more-similar nodes are angularly closer and are, therefore, more likely
to be connected, whereas not-so-similar pairs of nodes have a high probabil-
ity of being connected only if they are popular. Specifically, nodes i and j are
connected with probability

pij D
1

1 C �
ˇ
ij

D
1

1 C
�

dij
��i�j

�ˇ
; (2.1)

where � controls the average degree of the network, ˇ controls its level of clus-
tering, and dij D R��ij, and ��ij D � � j� � j�i � �jjj is the angular distance
between nodes i and j. Notice that there are no constraints on the distribution of
hidden variables � and � . The angular distribution could be nonhomogeneous,
and both hidden variables could even be correlated. This is an important obser-
vation because such angular inhomogeneities or correlations can explain the
emergence of communities and other nontrivial topological patterns observed
in real networks (Allard and Serrano [2020]).

A priori, the functional form of the connection probability could be any
integrable function of argument f

�

dij
��i�j

�

. However, the Fermi–Dirac form of
the connection probability in Eq. (2.1) is the only possible choice that defines
maximally random ensembles of graphs that are simultaneously sparse,1 heter-
ogeneous, clustered, small-worlds, and maximally degree–degree uncorrelated
(Boguñá et al. [2020]).2 Besides, with this choice, parameter ˇ has full control

1 By sparse networks we mean ensembles of networks with size-independent average degree.
2 By maximally degree–degree uncorrelated we mean that the probability of a node with hidden

variable � having a neighbor with hidden variable �0 is independent of �. Yet, for heteroge-
neous scale-free networks, some level of degree–degree correlation is unavoidable, as shown
in Boguñá, Pastor-Satorras, and Vespignani (2004).
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8 The Structure and Dynamics of Complex Networks

of the level of clustering without affecting the degree distribution. It can be
shown that the model undergoes a structural phase transition at ˇ D 1 so that,
for ˇ < 1, networks are unclustered, whereas for ˇ > 1, the ensemble gener-
ates networks with finite clustering in the thermodynamic limit (Serrano et al.
[2008]).

A Sೳ೷೺೶೯ A೶ೱ೹೼ೳ೾ೲ೷ ೾೹ G೯೸೯೼೫೾೯ N೯೾ഁ೹೼೵೽ ೰೼೹೷ ೾ೲ೯ S
1 E೸೽೯೷೬೶೯

The algorithm below generates networks from the S
1 ensemble in the limit

N � 1, in the simple scenario of uncorrelated hidden variables � and � ,
and with the similarity coordinate homogeneously distributed.

1. Fix the number of nodes N, parameter ˇ > 1, and the target average
degree hki

2. Set � to

� D
ˇ

2�hki
sin
�

�

ˇ

�

3. Assign a hidden degree � to every node from �.�/ so that h�i D hki.
Assign also an angular position � to each node sampled uniformly at
random within the interval Œ0; 2��.

4. Connect every pair of nodes with probability given by Eq. (2.1).

With this parametrization – and in the thermodynamic limit – the expected
degree of a node with hidden degree � is simply Nk.�/ D �, which justifies the
name of hidden degree. Indeed, the expected degree of any node i with hidden
variables .�i; �i/ can be evaluated as Nk.�i; �i/ D

P

j pij, where the connection
probability is given in Eq. (2.1). If the network is homogeneous with respect
to the similarity space, Nk.�i; �i/ is independent of �i. Thus, the expected degree
of any node with hidden degree �, located without loss of generality at � D 0,
can be expressed as

Nk.�/ D 2��

Z

�0�.�0/

"

Z N
2���0

0

dt
1 C tˇ

#

d�0 D (2.2)

D N
Z

�.�0/2F1

 

1;
1
ˇ

; 1 C
1
ˇ

; �

�

N
2���0

�ˇ
!

d�0;

where 2F1.1; 1
ˇ

; 1 C 1
ˇ

; �xˇ / is the hypergeometric function, whose asymp-
totic behavior when x ! 1 is 2F1.1; 1

ˇ
; 1 C 1

ˇ
; �xˇ / � � csc.�=ˇ/=.ˇx/.
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Using this result, we recover the proportionality between expected and hidden
degrees.

The degree distribution of the model can be evaluated as

P.k/ D
1
kŠ

Z

�ke���.�/d�; (2.3)

that is, a mixture of Poisson distributions weighted by �.�/. Eq. (2.3) shows that
the model generates nodes with degree zero with probability P.0/ D he��i, so
that the expected number on nonzero degree nodes is Nobs D NŒ1 � P.0/�,
whereas the observable average degree (counting only nodes with nonzero
degree) is hkiobs D hki=Œ1 � P.0/�.

In the case of scale-free networks, we consider �.�/ to be a power-law
distribution of the form

�.�/ D .
 � 1/�

�1
0 ��
 ; � > �0 D


 � 2

 � 1

hki ; 
 > 2: (2.4)

Plugging this expression into Eq. (2.3), the degree distribution reads

P.k/ D .
 � 1/�

�1
0

�.kC 1 � 
; �0/

kŠ
; (2.5)

where �.kC1�
; �0/ is the incomplete gamma function, so that the asymptotic
behavior of the degree distribution is P.k/ � k�
 . To simulate sparse scale-free
networks with 
 < 2 (as found, for instance, in airport networks) we need to
introduce a cutoff in the distribution of hidden degrees �c. In particular, we
choose a hard cutoff of the form

�.�/ D
.
 � 1/�


�1
0

1 �
�

�c
�0

�1�

��
 with �0 < � < �c; (2.6)

where the lower cutoff is the solution of the equation

hki D

 � 1

 � 2

�0

1 �
�

�c
�0

�2�


1 �
�

�c
�0

�1�

: (2.7)

Equations (2.6) and (2.7) can also be used to compensate for finite size effects
in scale-free networks with 
 & 2. Indeed, to prevent extreme fluctuations
arising when 
 is very close to 2, instead of generating values of � from the
unbounded distribution Eq. (2.4), we introduce a hard cutoff whose value is the
same as the natural cutoff of the unbounded distribution, which can be approx-
imated by �c D �0N1=.
�1/ (Boguñá, Pastor-Satorras, and Vespignani [2004]).
Then, we generate values of � from Eq. (2.6) with parameter �0 equal to

�0 D
1 � N�1

1 � N
2�



�1


 � 2

 � 1

hki: (2.8)
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10 The Structure and Dynamics of Complex Networks

Notice that when 
 is very close to 2, finite size effects can be very impor-
tant even for large networks. However, notice that this is not the only source
of finite size effects. To fully account for finite size effects, we must also con-
sider the effects coming from the upper limit in the integral in Eq. (2.2), as
done in García-Pérez et al. (2019). However, in many practical applications,
the correction in Eq. (2.8) is enough.

The S
1 model can be used to produce synthetic ensembles with controllable

structural features or for high-fidelity replication of a specific real network. To
that end, observed degrees in the real network can be taken as good proxies of
hidden degrees, and parameters � and ˇ can be tuned to reproduce the average
degree and clustering of the real network. This procedure is not very accurate
for heterogeneous networks due to strong fluctuations. Actual hidden degrees
could be estimated from real data to avoid the mismatch between hidden and
observed degrees, but this operation can be demanding and, besides, there is
no guarantee that all nodes end up with the exact same degree they had in the
real network. An alternative is the implementation of the geometric randomiza-
tion model introduced in Starnini, Ortiz, and Serrano (2019), which preserves
exactly the degree sequence of the input network while producing a version of
the network maximally congruent with the S

1 model.
The geometric randomization model assumes the same form of the connec-

tion probability as in the S
1 model. Given a real network, nodes are given

angular coordinates in the similarity space uniformly at random. Then, the net-
work is rewired in order to maximize the likelihood that the new topology is
generated by the S

1 model while preserving the observed degrees and, thus, the
total number of edges. After selecting a value of ˇ, for instance, the one that
replicates the level of clustering of the original network, the rewiring procedure
is conducted by executing a Metropolis–Hastings algorithm as follows.

G೯೹೷೯೾೼ೳ೭ R೫೸೮೹೷ೳഄ೫೾ೳ೹೸ M೹೮೯೶

1. Assign each node an angular coordinate uniformly at random.
2. Choose two links at random, say between nodes i and j and between

nodes l and m.
3. Compute the probability of rewiring (connecting i and l and j and m) as

pr D min
�

1;
Lnew

Lold

�

D min
�

1;
�

��ij��lm
��il��jm

�ˇ
�

; (2.9)

where Lnew corresponds to the value of the likelihood function after the
swap and Lold before the swap, both evaluated using Eq. (3.1) (see next
section) and the probability of connection in Eq. (2.1). Notice that pr
only requires information about the angular coordinates of nodes.
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