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Introduction

It was first observed by Birkhoff and von Neumann [6] that the logical structure

of quantum mechanics is related to the orthomodular lattice formed by closed

subspaces of a complex Hilbert space. On each orthomodular lattice is defined

an important class of functions called states; all states form a convex set whose

extreme points are known as pure states [63, Section III.3]. Gleason’s theorem

[26] describes the set of states for the orthomodular lattices associated to sep-

arable complex Hilbert spaces. It says that all states can be identified with

bounded self-adjoint positive operators of trace one; in particular, pure states

correspond to rank one projections, i.e. rays of the Hilbert space.

The classic Wigner’s theorem [67] (see also [11, 50, 63]) characterizes uni-

tary and anti-unitary operators as symmetries of quantum mechanical systems,

i.e. every bijective transformation of the set of pure states preserving the tran-

sition probability is induced by a unitary or anti-unitary operator. We refer to

Chevalier [12] for a history and a brief description of the physical background

(for example, it is shown how to derive the Schrödinger equation for a conser-

vative physical system from Wigner’s theorem).

In this book, readers will meet two versions of Wigner’s theorem. The non-

bijective version says that an arbitrary transformation of the Grassmannian

formed by rays of a complex Hilbert space which preserves the angles between

pairs of rays (the square of the cosine of such an angle is equal to the transi-

tion probability between the corresponding pure states) is induced by a linear

or conjugate-linear isometry. On the other hand, it was observed by Uhlhorn

[62] that to get a unitary or anti-unitary operator it is sufficient to require that

a transformation of the Grassmannian of rays is a bijection preserving the or-

thogonality relation in both directions and the dimension of the Hilbert space

is not less than three. Note that the non-bijective analogue of the latter state-

ment does not hold for infinite-dimensional Hilbert spaces. Uhlhorn’s theorem

is a simple consequence of the Fundamental Theorem of Projective Geometry

1

www.cambridge.org/9781108790918
www.cambridge.org


Cambridge University Press
978-1-108-79091-8 — Wigner-Type Theorems for Hilbert Grassmannians
Mark Pankov 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Introduction

(for this reason, the dimension of the Hilbert space is assumed to be not less

than three); but it reveals the following important relation between the logical

structure and the probabilistic structure of quantum mechanical systems: if the

logical structure is preserved, then probabilistic structure also is preserved.

The description of bijective transformations preserving the convex structure

of the set of all quantum states (the set of all bounded self-adjoint positive oper-

ators of trace one) [30] is a classic application of Uhlhorn’s version of Wigner’s

theorem. Since pure states are characterized as extreme points of the convex

set of all states, every such transformation induces a bijective transformation

of the set of pure states. The latter transformation preserves the orthogonality

relation in both directions (this fact is non-trivial) and we come to a unitary or

anti-unitary operator.

We present Wigner type theorems for Hilbert Grassmannians. It must be

pointed out that we distinguish the Grassmannians whose elements are finite-

dimensional subspaces (the dual objects are the Grassmannians consisting of

closed subspaces of finite codimensions) and the Grassmannians formed by

closed subspaces whose dimension and codimension both are infinite. Results

of such a kind were first obtained in [36] and [27, 59], where the non-bijective

and Uhlhorn’s versions of Wigner’s theorem were extended on other Grass-

mannians. Molnár’s theorem [36] states that transformations of Grassmannians

(formed by finite-dimensional subspaces) preserving the principal angles be-

tween any pair of subspaces are induced by linear and conjugate-linear isome-

tries (except one finite-dimensional case). We generalize this result and show

that it is sufficient to assume that only some types of the principal angles are

preserved. Another generalization of Molnár’s theorem was proved by Gehér

[25].

Györy [27] and Šemrl [59] (independently) described bijective transforma-

tions of Hilbert Grassmannians preserving the orthogonality relation in both

directions. Note that a non-bijective version of this result holds only for finite-

dimensional Hilbert spaces. One of the applications of the Györy–Šemrl theo-

rem is the determination of isometries of Hilbert Grassmannians with respect

to the gap metric [24].

In the case when the Grassmannian consists of closed subspaces whose di-

mension and codimension both are infinite, a bijective transformation preserv-

ing the orthogonality relation (in both directions) is also inclusions preserv-

ing and we show that it can be extended to an automorphism of the lattice

of closed subspaces. It is well known that all automorphisms of the lattice

of closed subspaces of an infinite-dimensional complex normed space are in-

duced by linear and conjugate-linear homeomorphisms of the normed space to

itself (for the finite-dimensional case this fails). This fact was established by
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Introduction 3

Kakutani and Mackey [31] as a step in the proof of the following remarkable

result: every orthomodular lattice formed by all closed subspaces of an infinite-

dimensional complex Banach space is the orthomodular lattice associated to a

complex Hilbert space.

We also investigate compatibility preserving transformations. The compati-

bility relation is one of the basic concepts of quantum logic. The orthomodular

lattice formed by closed subspaces of a complex Hilbert space is considered as

the standard quantum logic. Elements of this lattice are identified with projec-

tions, i.e. self-adjoint idempotents in the Banach algebra of bounded operators.

Two closed subspaces are compatible if and only if the corresponding projec-

tions commute. Two distinct rays are compatible only in the case when they are

orthogonal. For this reason, we regard statements which describe compatible

preserving transformations as Wigner type theorems.

We will use geometric methods based on properties of Grassmann graphs in

the spirit of [15, 45]. So, the Fundamental Theorem of Projective Geometry,

Chow’s theorem [13], apartments and their orthogonal analogues will be useful

tools for our investigations. We include a chapter on geometric transformations

of Grassmannians associated to vector spaces of arbitrary (not necessarily fi-

nite) dimension. A large portion of the results of this chapter is new and cannot

be found in [15, 44, 45].

At the end, we give a few words on applications. It was noted above that

Uhlhorn’s version of Wigner’s theorem was exploited in determining bijective

transformations preserving the convex structure of the set of all quantum states.

In a similar way, we will use analogues of Wigner’s theorem for Hilbert Grass-

mannians to study linear transformations of the real vector space of self-adjoint

finite-rank operators which send projections of fixed rank to projections of the

same rank [1, 57, 58] or to projections of other fixed rank [49].
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Two Lattices

We describe briefly some basic properties of the lattice formed by all sub-

spaces of a vector space and the orthomodular lattice consisting of all closed

subspaces of a complex Hilbert space. The first lattice is investigated in clas-

sic projective geometry [3]. The second is related to the logical structure of

quantum mechanical systems (we refer to [19, 63] for the details and strongly

recommend the short problem book [14] as a quick introduction to the topic).

1.1 Lattices

Let X be a non-empty set with a certain relation denoted by ≤. The pair (X,≤) is

called a partially ordered set if for all x, y, z ∈ X the following three conditions

hold:

• x ≤ x;

• if x ≤ y and y ≤ x, then x = y;

• if x ≤ y and y ≤ z, then x ≤ z.

A partially ordered set (X,≤) is said to be a lattice if it satisfies the following

additional conditions:

• for any two elements x, y ∈ X there is the least upper bound x ∨ y, i.e. an

element z ∈ X such that x ≤ z, y ≤ z and we have z ≤ z′ for all z′ ∈ X

satisfying x ≤ z′ and y ≤ z′;

• for any two elements x, y ∈ X there is the greatest lower bound x ∧ y, i.e.

an element t ∈ X such that t ≤ x, t ≤ y and we have t′ ≤ t for all t′ ∈ X

satisfying t′ ≤ x and t′ ≤ y.

A lattice is called bounded if it contains the least element 0 and the greatest

element 1 such that 0 ≤ x ≤ 1 for every element x. A lattice (X,≤) is complete

4
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1.1 Lattices 5

if for every subset Y ⊂ X there is the least upper bound
∨

y∈Y y and the greatest

lower bound
∧

y∈Y y.

An isomorphism between partially ordered sets (X,≤) and (X′,≤) is a bijec-

tion f : X → X′ preserving the order ≤ in both directions, i.e. for x, y ∈ X we

have

x ≤ y ⇐⇒ f (x) ≤ f (y).

If these partially ordered sets are lattices and f : X → X′ is an isomorphism

between them, then

f (x ∨ y) = f (x) ∨ f (y) and f (x ∧ y) = f (x) ∧ f (x)

for all x, y ∈ X; moreover, if our lattices are complete, then

f

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∨

y∈Y

y

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

∨

y∈Y

f (y) and f

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∧

y∈Y

y

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

∧

y∈Y

f (y)

for any subset Y ⊂ X. Isomorphisms of bounded lattices transfer the least and

greatest elements to the least and greatest elements, respectively.

A bijection g : X → X′ is said to be an anti-isomorphism of (X,≤) to (X′,≤)

if it is order reversing in both directions, i.e.

x ≤ y ⇐⇒ g(y) ≤ g(x)

for all x, y ∈ X. If our partially ordered sets are lattices and g : X → X′ is an

anti-isomorphism between them, then

g(x ∨ y) = g(x) ∧ g(y) and g(x ∧ y) = g(x) ∨ g(y)

for all x, y ∈ X; also, we have

g

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∨

y∈Y

Y

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

∧

y∈Y

g(y) and g

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∧

y∈Y

Y

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

∨

y∈Y

g(y)

for any subset Y ⊂ X if our lattices are complete. Anti-isomorphisms of bounded

lattices transpose the least and greatest elements.

Example 1.1 For every non-empty set X we denote by L(X) the set of all

subsets of X. The partially ordered set (L(X),⊂) is a bounded lattice. If A and

B are subsets of X, then their least upper bound is A∪B and their greatest lower

bound is A ∩ B. The least element of the lattice L(X) is the empty set and the

greatest element is X. This lattice is complete. The lattices L(X) and L(Y) are

isomorphic if and only if the sets X and Y are of the same cardinality. In this

case, every isomorphism of these lattices is induced by a bijection between X

and Y .
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6 Two Lattices

A bounded lattice is said to be complemented if for every element x there is

a complement x′, i.e. an element x′ satisfying

x ∧ x′ = 0 and x ∨ x′ = 1.

A Boolean algebra is a complemented lattice with the following distributive

rules:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Using these rules, we can show that for every element of a Boolean algebra

there is the unique complement (see, for example, [63, p. 8]).

Example 1.2 The lattice L(X) from Example 1.1 is a Boolean algebra.

Let (X,≤) be a bounded lattice. An orthocomplementation is a transforma-

tion x→ x⊥ such that for all x, y ∈ X the following conditions hold:

(1) x ∨ x⊥ = 1 and x ∧ x⊥ = 0,

(2) x⊥⊥ = x,

(3) if x ≤ y, then y⊥ ≤ x⊥.

The conditions (2) and (3) imply that the orthocomplementation is an anti-

automorphism of (X,≤). Hence 0⊥ = 1 and 1⊥ = 0. For elements x, y ∈ X we

write x ⊥ y and say that these elements are orthogonal if x ≤ y⊥ (this relation

is symmetric, since x ≤ y⊥ implies that y ≤ x⊥).

A bounded lattice with an orthocomplementation is called orthomodular if

for any two elements x, y satisfying x ≤ y we have

x ∨ (x⊥ ∧ y) = y.

In such a lattice, De Morgan’s laws

(x ∨ y)⊥ = x⊥ ∧ y⊥ and (x ∧ y)⊥ = x⊥ ∨ y⊥

hold true [63, Lemma 3.1]. Two elements x, y of an orthomodular lattice are

said to be compatible if

x′ = x ∧ (x ∧ y)⊥ and y′ = y ∧ (x ∧ y)⊥ (1.1)

are orthogonal. For example, x and y are compatible if x ≤ y or x ⊥ y.

Example 1.3 Every Boolean algebra is an orthomodular lattice whose ortho-

complementation is the complementation. Let x, y be elements of a Boolean

algebra and let x′, y′ be as in (1.1). Using the distributive rules and De Mor-

gan’s laws, we establish that x′ = x ∧ y⊥ and y′ = y ∧ x⊥, which implies that
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1.1 Lattices 7

x′ ∧ y′ = 0, i.e. x′ and y′ are orthogonal. Therefore, any two elements in a

Boolean algebra are compatible.

Remark 1.4 By [63, Lemma 3.7], two elements in an orthomodular lattice

(X,≤) are compatible if and only if there is a subset X′ ⊂ X containing these

elements and such that (X′,≤) is a Boolean algebra.

Let (X,≤) be an orthomodular lattice such that for every countable subset

there is a least upper bound. A function p : X → [0, 1] is called a state if it

satisfies the following conditions:

• p(0) = 0 and p(1) = 1,

• for every countable subset {xi}i∈I formed by mutually orthogonal elements

we have

p

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∨

i∈I

xi

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

∑

i∈I

p(xi).

If I is a countable set, {pi}i∈I are states and {ti}i∈I are non-negative real numbers

such that
∑

i∈I ti = 1, then the function p : X → [0, 1] defined as

p(x) =
∑

i∈I

ti pi(x) for all x ∈ X

is a state, i.e. the set of all states is convex. Extreme points of this convex set

are said to be pure states. In other words, a state p is pure if for any states

p1, p2 and any t ∈ (0, 1) the equality

p = tp1 + (1 − t)p2

implies that p = p1 = p2.

Example 1.5 Consider the Boolean algebra L(X) formed by all subsets of a

set X. For x ∈ X we define px(y) = δ
y
x for every y ∈ X (δ

y
x is the Kronecker

symbol) and extend px on L(X) as follows:

px(A) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if x ∈ A ,

0 if x � A ;

it is clear that px is a state. For every state p : L(X)→ [0, 1] the set

Ap = {x ∈ X : p(x) > 0}

is countable (otherwise, there is a natural number n > 1 such that the set of

all x ∈ X satisfying p(x) > 1/n is uncountable, which is impossible). If X is

countable, then p is completely determined by the values on elements of X, i.e.

p =
∑

x∈Ap

tx px ,
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8 Two Lattices

where each tx is greater than 0 and
∑

x∈Ap
tx = 1 (since p(Ap) = 1). In this

case, p is a pure state if and only if p = px for a certain x ∈ X. In the general

case, the same holds if and only if X is a set of non-measurable cardinality [17,

Chapter 6, Theorem 1.4].

1.2 The Lattice of Subspaces of a Vector Space

Let V be a left vector space over a division ring R, i.e. V is an additive abelian

group (whose identity element is denoted by 0) and there is a left action of the

division ring R on V satisfying the following conditions:

(1) 1x = x for all x ∈ V ,

(2) a(x + y) = ax + ay for all a ∈ R and x, y ∈ V ,

(3) (a + b)x = ax + bx for all a, b ∈ R and x ∈ V ,

(4) a(bx) = (ab)x for all a, b ∈ R and x ∈ V

(using (2) and (3) we show that a0 = 0 for every a ∈ R and 0 ∈ V and 0x = 0

for every x ∈ V and 0 ∈ R). This action can be considered as a right action of

the opposite division ring R∗. The division rings R and R∗ have the same set of

elements and the same additive operation. The multiplicative operation a∗b on

R∗ is defined as b · a, where · is the multiplicative operation on R (note that R

coincides with R∗ in the commutative case). For the corresponding right action

of R∗ on V the condition (4) is rewritten as

(xb)a = x(b ∗ a).

Every left or right vector space over R is a right or, respectively, left vector

space over R∗.

Denote by L(V) the set of all subspaces of V . The partially ordered set

(L(V),⊂) is a bounded lattice. For any two subspaces X and Y the least up-

per bound is X + Y and the greatest lower bound is X ∩ Y . The least element is

0 and the greatest element is V . This lattice is complete.

If dim V = 1, then the lattice consists of the least element and the greatest

element only. In the case when dim V = 2, every element ofL(V) distinct from

0 and V is a 1-dimensional subspace and for any proper subspaces X,Y ⊂ V

the inclusion X ⊂ Y implies that the subspaces are coincident. For this reason,

we will always suppose that dim V ≥ 3.

Remark 1.6 A complemented lattice is called modular if for any element x

and elements y, z satisfying y ≤ z we have

(x ∨ y) ∧ z = (x ∧ z) ∨ y.
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1.2 The Lattice of Subspaces of a Vector Space 9

The rank of a lattice is the maximal number of non-zero elements in linearly

ordered subsets. It is well known that a modular lattice of rank ≥ 4 is the

lattice formed by all subspaces of a left vector space over a division ring if for

every element there is more than one complement (it must be pointed out that

the rank is not assumed to be finite, see [3, Chapter VII]), and we need the

additional desarguesian axiom to state the same for the case of rank three.

If B is a basis of the vector space V , then the set A consisting of all sub-

spaces spanned by subsets of B is said to be the apartment of L(V) associated

to the basis B. The partially ordered set (A,⊂) is a complete Boolean algebra

isomorphic to the Boolean algebra formed by all subsets of a set whose cardi-

nality is the dimension of V . Two bases define the same apartment if and only

if the vectors from one basis are scalar multiples of the vectors from the other.

Proposition 1.7 For any two elements of L(V) there is an apartment con-

taining them.

Proof For any two subspaces X,Y we take a basis of X ∩ Y and extend it to

bases of X and Y . The union of these bases is an independent subset and we

extend it to a basis of V . The associated apartment contains both X and Y . �

Remark 1.8 If V is finite-dimensional, then the latticeL(V) together with the

family of all apartments is a structure closely connected to the Tits building of

the general linear group GL(V) (see [61] for the details).

The Grassmannians of the vector space V can be defined as the orbits of

the action of the general linear group GL(V) on the lattice L(V). If V is finite-

dimensional, thenGk(V) is the Grassmannian formed by all k-dimensional sub-

spaces of V , where 1 ≤ k ≤ dim V − 1. Suppose that dim V = α is an infinite

cardinality. For every cardinality β ≤ α we denote by Gβ(V) the Grassmannian

consisting of all subspaces X ⊂ V such that

dim X = β and codim X = α,

and we write Gβ(V) for the Grassmannian formed by all subspaces Y ⊂ V

satisfying

dim Y = α and codim Y = β.

Then Gα(V) = Gα(V) consists of all subspaces whose dimension and codi-

mension both are α. If β is an infinite cardinality and G is Gβ(V) or Gβ(V),

then for every X ∈ G there are infinitely many elements of G incident to X;

we note that the partially ordered set (G,⊂) is not a lattice. The intersections

of a Grassmannian with apartments of L(V) will be called apartments of this

Grassmannian.

www.cambridge.org/9781108790918
www.cambridge.org


Cambridge University Press
978-1-108-79091-8 — Wigner-Type Theorems for Hilbert Grassmannians
Mark Pankov 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 Two Lattices

The dual vector space V∗ (formed by all linear functionals on V) is a right

vector space over R. We will consider V∗ as a left vector space over the opposite

division ring R∗.

Let {ei}i∈I be a basis of V . Consider the vectors {e∗
i
}i∈I in V∗ satisfying

e∗
i
(e j) = δ

i
j

for any pair i, j ∈ I, where δi
j

is the Kronecker symbol. These

vectors form a linearly independent subset of V∗. If V is finite-dimensional,

then this is a basis of V∗ and we have dim V = dim V∗. In the case when V is

infinite-dimensional, there are elements of V∗ which are non-zero on infinitely

many ei and we get dim V < dim V∗.

Theorem 1.9 If dim V = α is infinite, then dim V∗ = βα, where β is the

cardinality of the associated division ring1.

Proof See [3, Section II.3]. �

For every subset X ⊂ V we define the annihilator X0 as the set of all x∗ ∈ V∗

satisfying x∗(x) = 0 for all x ∈ X. It is clear that X0 is a subspace in V∗. For

every subset Y ⊂ V∗ the (left) annihilator 0Y is the subspace of V formed by

all vectors y ∈ V such that y∗(y) = 0 for all y∗ ∈ Y .

Remark 1.10 If V is finite-dimensional, then the second dual space V∗∗ can

be naturally identified with V . Every vector x ∈ V defines the linear functional

x∗ → x∗(x) on V∗ and this correspondence is a linear isomorphism of V to V∗∗.

Then 0X = X0 for every subspace X ⊂ V∗.

For every subspace X ⊂ V we have 0(X0) = X, and

(X + Y)0
= X0 ∩ Y0, (X ∩ Y)0

= X0
+ Y0

for all subspaces X,Y ⊂ V . Similarly, (0X′)0
= X′ for every subspace X′ ⊂ V∗

and

0(X′ + Y ′) = 0X′ ∩ 0Y ′, 0(X′ ∩ Y ′) = 0X′ + 0Y ′

for all subspaces X′,Y ′ ⊂ V∗.

Denote by Lfin(V) and Lfin(V) the sets of all subspaces of finite dimension

and finite codimension, respectively. If V is finite-dimensional, then Lfin(V)

and Lfin(V) both are coincident with L(V). In the case when V is infinite-

dimensional, the partially ordered sets (Lfin(V),⊂) and (Lfin(V),⊂) are un-

bounded lattices. The following facts are well known:

• if X ∈ Lfin(V), then X0 ∈ Lfin(V∗) and the dimension of X0 is equal to the

codimension of X;

1 Recall that βα is the cardinality of the set formed by all maps from a set of cardinality α to a
set of cardinality β.
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