
Cambridge University Press
978-1-108-78987-5 — How to Write Good Programs
Perdita Stevens 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1

Introduction

This book assumes that you are committed to learning to program,

and want to do well. Most likely, you are taking a programming

course in college or university. Perhaps you don’t have much expe-

rience programming yet, or perhaps you have programmed a fair

bit, but now you are interested in how to improve the quality of

the programs you write. This book aims to help you learn how

to write good programs, in any language. It’s the book I wish

I’d had available to me, nearly forty years ago when I started

programming; and the book I wish I could have recommended to

my students, especially my irst-year undergraduate students, over

many years since.

Let us tackle one thing head on. People sometimes talk as though

students could be divided into programming sheep and non-

programming goats: as though programming ability were innate.

My experience over more than twenty-ive years of teaching, and

most current research, suggests that this is simply not true. I have

lost count of the number of times I have seen students really

struggle to begin with, perhaps even failing their irst programming

course, but go on to become excellent programmers. It also some-

times happens that people come in feeling very conident, perhaps

having more programming experience than most of those around

them, and later realise that they had hardly begun to tackle the

most interesting challenges in software development.

Some people love programming from the very beginning. These

people may have started coding at a young age, and often choose to

sit up late into the night doing so. That’s great, and if you’re one of

them, I hope you will beneit from this book. But, full disclosure:

I was not one of those people. Indeed, when, as a child, I was irst

1

www.cambridge.org/9781108789875
www.cambridge.org


Cambridge University Press
978-1-108-78987-5 — How to Write Good Programs
Perdita Stevens 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 1 Introduction

introduced to programming, I didn’t really see the point. I didn’t

start to spend a lot of time on programming until, in my twenties, I

encountered a problem I couldn’t solve without writing a program.

I learned to program because I had a problem I needed to solve,

which I couldn’t solve any other way.

Tip

To write good programs, you don’t have to love programming.

Moreover, even people who love programming do not automat-

ically write good programs: everyone has to learn how.

The great thing is that there’s a virtuous cycle. The better your

programs get, the more fun it is to write them.

write good

programs

enjoy

programming

pride in the work

sense of satisfaction

Perhaps you think it will take longer to write your programs so

that they are good, and wonder whether this is something you want

to invest in. Surprisingly, as you will discover through using this

book, writing good programs saves you time and effort, compared

with writing any old programs. If you like, you can spend that time

and effort on writing more programs. If not, you can spend it on

something else.

www.cambridge.org/9781108789875
www.cambridge.org


Cambridge University Press
978-1-108-78987-5 — How to Write Good Programs
Perdita Stevens 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 Who Is This Book For? 3

This book will not teach you any particular programming

language – for that you will need a different book, a course, or an

online tutorial, and there are plenty to choose from. This book will

help you in the process of learning any programming language, and

especially, it will help you to learn to write it well, and with deep

understanding that you can also transfer to your next language. It

covers things that programming courses tend to assume students

will pick up by osmosis, but that are often, in practice, stumbling

blocks. Unlike books aimed at professionals, which assume you

can always express what you want to express in the language, this

book will help you develop ways of getting unstuck, unconfused

and debugged.

You’ll learn to write code that you can understand and modify

not only when you are at your cleverest, but also when you’re not.

This will lower your stress levels. It’ll let you be lazy, in the best

possible way.

There’s a certain satisfaction in doing a thing well, though: that’s

how the virtuous circle works.

Robert Martin, in his wonderful book for professional software

developers, Clean Code, talks about programmers needing to have

“code sense”. Code sense is what lets a seasoned professional tell

good code from bad, and, much harder, systematically develop

good code. If you are starting out with programming, this is what

you need to develop. Youwon’t develop it in a day, aweek, or a year,

but, by paying attention in the way this book aims to encourage,

you will gradually increase your code sense.

1.1 Who Is This Book For?

If you are learning to program, this book is for you.

If you are helping other people to learn to program, this book is

for you.

If you are a professional programmer, this book is not intended

for you – but you are welcome to read it anyway. Perhaps youwould

like to recommend it to someone. I’d welcome your comments.

www.cambridge.org/9781108789875
www.cambridge.org


Cambridge University Press
978-1-108-78987-5 — How to Write Good Programs
Perdita Stevens 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 1 Introduction

1.2 About the Boxes

We use various kinds of boxes. There are tips, like this one:

Tip

A note on spelling. If you spell in British English, you may

expect the spelling “programme” rather than “program”. How-

ever, by long convention, when we write about computer pro-

grams, we use the American spelling. Very, very occasionally

this is useful disambiguation; computer science events may

involve both programs and a programme.Normally, it’s just one

of those things you have to know.

Explanations of terms, like this:

Terminology: Coding, programming, software engineering

Coding, programming and software engineering overlap, and

all involve giving a computer instructions. They are in

increasing order of sophistication. A software engineer can

program, and a programmer can code, but not necessarily

the other way round. A coder might only translate precise

English instructions into a programming language. A pro-

grammer takes responsibility for deciding what to write and

when it is good. A software engineer typically works as part

of a team, and solves real-world problems with high-quality

software.

After absorbing the content of this book, you will be well

equipped to progress to software engineering: more on that in

Chapter 15.

www.cambridge.org/9781108789875
www.cambridge.org


Cambridge University Press
978-1-108-78987-5 — How to Write Good Programs
Perdita Stevens 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 About the Boxes 5

There are stories, like this:

Story

Some people are hooked by programming from the very irst

time they meet the idea. I wasn’t one of those. I thought it

was quite cute that you could do things like writing programs

to output a list of prime numbers, but I was never interested

in writing video games, which, when I was young, looked like

the only other thing you could do with a computer. The irst

program I really cared about was one I wrote when I was doing

my PhD in mathematics. I had a conjecture that I thought

was true for all integers n (it was to do with a certain collec-

tion of esoteric mathematical structures, the Weyl modules for

GL(2,Q)). The calculations to check it got too tedious to do

by hand after about n = 5, though. So I wrote a program

to check my conjecture, and was quite easily able to ind out

that my conjecture was true, at least, for all n up to 10,000. Of

course that wasn’t a proof, but it gave me conidence to look for

a proof, and eventually, I found one.

And, of course, there are examples of programs. Here’s one exam-

ple in Python:

Python example

print("Hello, World!")

Note that programs are not always complete. For example, Java

code has to be inside a method inside a class, but I usually omit the

lines that show that, writing

www.cambridge.org/9781108789875
www.cambridge.org


Cambridge University Press
978-1-108-78987-5 — How to Write Good Programs
Perdita Stevens 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 1 Introduction

Java example

System.out.println("Hello, World!");

rather than something like

Java example

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello, World!");

}

}

Do not worry if any of the program examples do not imme-

diately make sense to you, but do have a look at them. This

book is supposed to support whatever language you are learning –

only occasionally are there points that are really speciic to one

language. You will probably ind that you can get the gist of

an example in a language you do not know, if you read it in

conjunction with the surrounding text. Learning to think beyond

the conines of whatever language you are studying at present, and

to transfer your skills between languages, is an important part of

becoming a good software developer. If you are at the beginning

of a programming career, the language you will use most may not

even have been invented yet. I have chosen to include examples

in Java, Python and Haskell: these are all common languages for

early programming courses, and they contrast interestingly with

one another, so that between them they allow us to cover a lot

of ground.

In order to guide you to further reading, and to information

that will help you it what you are learning into the context of the

www.cambridge.org/9781108789875
www.cambridge.org


Cambridge University Press
978-1-108-78987-5 — How to Write Good Programs
Perdita Stevens 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.4 Acknowledgements 7

programming language you are learning, there are often sugges-

tions for things to put into your favourite search engine, like this:

some language issue your_language

1.3 Structure of This Book

The nature of learning to program is that you will improve many

skills in parallel; yet the nature of a book is that chapters need

topics. I have tried to include many cross-references between the

chapters, while leaving you plenty of freedom to dip into the book

as and when you wish.

Chapters 1 (you’re reading that now) to 3 get us going. Chapter 4

will help you to place the language you are learning in the landscape

of all programming languages. Chapters 5 to 11 are the heart of

the book; you’re likely to lip between these chapters frequently.

Chapters 12 and 13 are speciically about how to do well in a

programming course; you might skip these entirely if, for example,

you are teaching yourself to program. Chapters 14 and 15 are the

farewell chapters, setting the scene for what I hope will be your

lifetime of writing good programs.

1.4 Acknowledgements

I am very grateful to all of my students, colleagues and friends who

have commented on drafts of this book, including the following:

Alejandra Amaro Patiño; Paul Anderson; Julian Bradield; Robin

Bradield; Carina Fiedler; Vashti Galpin; Lilia Georgieva; Jeremy

Gibbons; Kris Hildrum; Lu-Shan Lee; James McKinna; Greg

Michaelson; Hugh Pumphrey; Don Sannella; Jennifer Tenzer;

Tom Ward.

Thanks are also due to all at Cambridge University Press, espe-

cially my editor David Tranah, and to the anonymous readers for

helpful suggestions.

www.cambridge.org/9781108789875
www.cambridge.org


Cambridge University Press
978-1-108-78987-5 — How to Write Good Programs
Perdita Stevens 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 1 Introduction

Of course, all remaining errors are mine. Feedback would be

most welcome.

Perdita Stevens

phowto@stevens-bradfield.com

www.cambridge.org/9781108789875
www.cambridge.org

