

Introduction to Water Resources and Environmental Issues

Second Edition

How much water does the world need to support growing human populations? What are the potential effects of climate change on the world's water resources? These questions and more are discussed in this thoroughly updated and expanded new edition. Written at the undergraduate level, this accessible textbook covers the fundamentals of water resources, water law, allocation, quality and quantity, and health issues, and provides examples of potential personal actions and solutions. There is a keener focus on climate change, as many of the predictions made in the first edition have now come to pass.

This new edition features improved artwork, more active learning prompts, more positive examples of beneficial changes, basic introductions to scientific approaches, and a discussion of emerging contaminants and LiDAR technology. It contains strong teaching features, with new "In Depth" and "Think About It" sections to encourage class discussion, and homework questions to test students' understanding.

Karrie Lynn Pennington has studied the interactions of land use, water quality, and quantity for over 30 years. The last 22 years were with the Natural Resources Conservation Service of the US Department of Agriculture (USDA) in the Mississippi Delta where, as in many places around the world, human actions changed the natural ecosystem into farmland, providing a classic example of land-use conversion for study.

She received her bachelor's degree in biology from the University of North Texas and completed her Master of Science in soils from the University of Idaho where she taught until moving to Tucson, Arizona. She taught for three more years at the University of Arizona (UA) before deciding to obtain her Ph.D. at UA. After completing her Ph.D. in soil and water science she moved to Mississippi, finishing her postdoctoral work with USDA's Agricultural Research Service. She is now retired.

Thomas V. Cech was born and raised on a farm near Clarkson, Nebraska. He graduated from Kearney State College with a Bachelor of Science degree in mathematics education, and later received a Master of Science degree in community and regional planning from the University of Nebraska, Lincoln. He was Executive Director of the Central Colorado Water Conservancy District in Greeley, taught undergraduate- and graduate-level water resources courses at the University of Northern Colorado and Colorado State University, and is now the Co-Director of the One World One Water (OWOW) Center at Metropolitan State University of Denver, Colorado.

"A comprehensive primer on our most precious, yet often neglected, resource. With systematic reviews of the critical challenges, this volume offers accessible treatment of thorny problems and provides useful summaries and additional readings. A must-read for students, scholars, and practitioners to safeguard water – the foundation of life."

Professor Christopher A. Scott, University of Arizona

"So glad to see this new edition! It's fully updated with contemporary trends and terminology. Particularly insightful are the 'Think About It' features embedded within each chapter, encouraging the reader to consider different facets of evolving water resource issues. Overall, it continues to be a well-organized, highly readable, and comprehensive treatment of a critically important resource."

Professor Ned Knight, Linfield College

"An encyclopedic journey into the connections between water issues and an array of topics, including human geography, public health, ecology, geology, history, and policy. It provides something for everyone – spectacular black-and-white photos, an introduction to virtually all aspects of water science, human interest stories, and great discussion questions."

Professor Kathy Jacobs, University of Arizona

Introduction to Water Resources and Environmental Issues

Second Edition

KARRIE LYNN PENNINGTON

THOMAS V. CECH

Metropolitan State University of Denver

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108746847

DOI: 10.1017/9781108784221

© Cambridge University Press & Assessment 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2022

Second edition 2022

 $A\ catalogue\ record\ for\ this\ publication\ is\ available\ from\ the\ British\ Library$

ISBN 978-1-108-74684-7 Paperback

Additional resources for this publication at www.cambridge.org/pennington.

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface		xi
1	Perspectives on Water and Environmental Issues	1
	Introduction	1
	Distribution of Water on Earth	2
	Ecosystems, Biomes, and Watersheds	10
	Global Water Use and Global Water Budget	15
	Global Population Growth and Human Expansion	23
	The Earth's Carrying Capacity for Humans, Is It a Set Number?	29
	Summary Points	32
	Questions for Analysis	33
	Further Reading	33
	References	33
2	The Water Environment of Early Civilizations	39
	Introduction	39
	Prehistoric Water Use	40
	Water and Agriculture: The Basis of Civilization	44
	Ancient Drinking Water and Sanitation Systems	51
	Water, Humans, and the Environment	55
	Historical Perspective: Humans and Environmental Change	58
	Summary Points	63
	Questions for Analysis	63
	Further Reading	63
	References	64
3	The Hydrologic Cycle	67
	Introduction	67
	The Hydrologic Cycle	68
	Scientific Debate	72
	Weather, Climate	76
	The Hydrologic Cycle and the Natural Environment	92
	The Hydrologic Cycle and the Human Environment	94
	Summary Points	96
	Questions for Analysis	97

vi Contents

	Further Reading	98
	References	98
4	Water Quality	101
	Introduction	101
	The Chemistry of Water	104
	Water Quality Failure	113
	Clean Water as a Human Right	124
	Who Me?	129
	Summary Points	131
	Questions for Analysis	132
	Further Reading	132
	References	132
5	Watershed Basics	135
	Introduction	135
	Watershed Delineation	137
	A Comparison of Erosion from Two Major Watersheds	139
	Watershed Structure	142
	The Biological (Biotic) Environment	144
	The Aquatic Environment	148
	Watershed Function	154
	Water Quantity	157
	Guest Essay By Dr. Milada Matouskova	158
	Summary Points	163
	Questions for Analysis	164
	Further Reading	165
	References	165
6	Groundwater	167
	Introduction	167
	The Physical Environment	168
	Interaction of Surface Water and Groundwater	172
	The Chemical and Aquatic Environment	178
	Summary Points	183
	Questions for Analysis	184
	Further Reading	185
	References	185
7	Lakes and Ponds	187
	Introduction	187
	Lake Types	188

		Contents	vii
	Lake Hydrology: Drainage Characteristics		196
	Trophic Status or Classification		196
	Lake Structure		198
	Lake Chemistry		200
	Food Webs		202
	Two Contrasting Lake Views		203
	Summary Points		207
	Questions for Analysis		208
	Further Reading		209
	References		209
8	Rivers and Streams		211
	Introduction		211
	River System Functions		214
	Physical Features of a River System		214
	Streamflow		223
	Fluvial Geomorphology: Forming a River		225
	River and Stream Ecology		231
	Guest Essay By Carolyn J. Schott		233
	Summary Points		237
	Questions for Analysis		238
	Further Reading		238
	References		238
9	Wetlands		241
	Introduction		241
	Wetland Features		243
	Wetland Types		252
	Wetland Classification		253
	Wetland Functions and Values		254
	Trends in Wetlands		257
	Summary Points		259
	Questions for Analysis		260
	Further Reading		260
	References		260
10	Dams and Reservoirs		263
	Introduction		263
	Types of Dams		265
	Purposes of Dams		271
	Guest Essay By Dr. Sara Beavis		277

viii Contents

	Discussion of the Impacts of Dams and Reservoirs	284
	Rivers, Dams, and Rehabilitation Efforts	291
	Is Dam Removal the Answer?	292
	Summary Points	295
	Questions for Analysis	296
	Further Reading	296
	References	297
11	Drinking Water and Wastewater Treatment	301
	Introduction	301
	Early Drinking Water Treatment	301
	Discovery of the Microscope	304
	Epidemics and the Microscope	306
	Wastewater Treatment	311
	Federal Protection of Drinking Water in the US	314
	Drinking Water Issues	315
	Source Water Protection	325
	Desalination	326
	Emerging Drinking Water Health Issues	327
	Guest Essay By James B. Chimphamba	330
	Early Wastewater Treatment	335
	Emerging Wastewater Treatment Innovations	338
	Summary Points	339
	Questions for Analysis	341
	Further Reading	341
	References	341
12	Water Allocation Laws	347
	Introduction	347
	Historical Development of Water Allocation Laws	349
	Development of the Riparian Doctrine	355
	Development of the Doctrine of Prior Appropriation	356
	Evolution of the Doctrine of Prior Appropriation	359
	Groundwater Allocation Laws	360
	Interstate Compacts	364
	Emerging Water Allocation Laws	365
	Summary Points	366
	Questions for Analysis	368
	Further Reading	368
	References	368

Contents ix

13	Roles of Federal, Regional, State, and Local Water Management Agencies	371
	Introduction	371
	US Federal Water Agencies	372
	Selected US Federal Water Agency Issues	380
	Selected Regional, State, and Local Water Agency Issues	393
	Privatization of Water Systems	399
	Guest Essay By Dr. Laurel Phoenix	399
	Summary Points	402
	Questions for Analysis	404
	Further Reading	404
	References	404
14	Water Conflicts, Solutions, and Our Future	407
	Introduction	407
	Tragedy of the Commons	409
	Safe Drinking Water	410
	Surface and Groundwater Conflicts	411
	Guest Essay By Kath Weston	412
	Environmental Restoration	415
	Global Climate Change	415
	Values	416
	Further Reading	417
	References	417
Inde	ЭХ	419

Preface

The stream of time moves forward, and mankind moves with it. Your generation must come to terms with the environment. You must face realities instead of taking refuge in ignorance and evasion of truth. Yours is a grave and sobering responsibility, but it is also a shining opportunity. You go out into a world where mankind is challenged, as it has never been challenged before, to prove its maturity and its mastery — not of nature, but of itself. Therein lies our hope and our destiny.

Rachel Carson, 1962 commencement address, Scripps College in California

We all live on one Earth, share one atmosphere, drink from the same waters. We are undeniably connected to our Earth and to each other. Global climate change affects all of us, in ways we do not recognize when we fail to make these connections and understand their significance.

We might not recognize that a global pandemic is a water issue, without considering that day-to-day actions that save lives require a source of plentiful, clean water. Washing hands, cleaning surroundings, and maintaining hydration are not possible without access to clean water. Without access to water, foods are not produced. Malnutrition leaves people more vulnerable to disease. The connections go on.

We might not recognize water as an issue of equality of justice, educational opportunity, medical care, or proper living conditions, but the connections are there for us to make if we will. Water supplies energy for development and is critical to many industrial processes that provide jobs. It makes agriculture possible in deserts. In areas where competition for water resources exists, we must consider the many people who depend on that same water for their fisheries and small farms; the family livelihoods that have existed for generations. How we choose to develop water can take those opportunities away forever, leading directly to more inequality. Unfortunately, the lack of inclusion of the many diverse peoples influenced by management of water resources has been apparent for many years. This generates inequality in the decision-making process which affects us all. Increasing diversity in the workplace, and in the policymaking process, are substantive changes which must occur.

The choices are not easy. We must draw upon creative problem solving and consider the needs of the Earth and humanity over development and profit. We will explore these issues more thoroughly in this text. It is our hope that students will follow the mandate presented to them by Rachel Carson.

Rachel Carson urged a generation to look at the interconnectivity of all of nature and realize that we are responsible for our part in challenging the distortion of truths which too often sacrifice our environment for commercial interests. Her warning about the misuse of chemicals in the 1950s and 60s mirrors today's warnings about increased greenhouse gases and global climate change. In this new edition, we examine more closely the connectivity of water resources issues and the associated environmental impacts of global climate change. We see the Earth's carrying capacity for humans already being strained by rising sea levels. We watch as the ferocity of storm events becomes greater and increase in destructive power. Extremes of weather – from drought to deluge – have countries facing environmental disasters ranging from deadly wildfires to more frequent floods. The human price for the neglect of our environment is already being paid, and without significant and timely action, the bill will only get higher.

Today our entire planet is in danger from global climate change. Our hydrologic cycle is being altered by choices from the individual to the global. We have known the dangers of the rapidly

xii Preface

changing greenhouse gas concentrations in our atmosphere for over seven decades; with the solidifying of the fundamental science that was established in the 1950s and then well understood by the 1970s. Scientific evidence that has been agreed on by the majority of actively publishing climate scientists, 97 percent, assure us that we humans are the cause. Governments of the world have had decades to invoke actions to slow global warming, but efforts have been met with political roadblocks. Today we are seeing more action as most of the leading science organizations around the world have issued public statements expressing these concerns, including international and US science academies, the United Nations Intergovernmental Panel on Climate Change, and many more reputable scientific bodies around the world.

The Intergovernmental Panel on Climate Change (IPCC), formed in 1988 by the World Meteorological Organization (WMO) and the United Nations Environment Program (UNEP), was charged with providing regular assessments of the scientific basis of climate change, its impacts and future risks, and options for possible solutions. Their 2019 special report states that a 1.5 degree Celsius (2.7 degree Fahrenheit) change in global temperature could be reached in the next 12 to 20 years. This, the report states, will result in widespread damage to ecological, economic, and human environments.

The cost of protecting national economies is too often promoted above the need to protect our environment. This political cry against reducing human global warming activities does not bode well for future generations. Today we need to reframe the discussion in terms of the morality of harming the human population and our environment. Rachel Carson provides a roadmap: We must face realities of our environment instead of taking refuge in ignorance and the evasion of truth. Greta Thunberg, a young Swedish environmental activist on climate change, has provided inspiration and motivation to millions showing that you can make a difference with actions and words. She challenges: "We know the solutions; all we have to do is wake up and change." We all have a grave and sobering responsibility, but also a shining opportunity to improve the health of our environment and all of humanity.

We will continue to examine issues, as described in the first edition preface, and solutions the students of today can choose to study and implement. Volunteering to talk about water to 4th graders on their natural resource field days was uplifting. I ended my talk about water by asking the students "what is the most important natural resource?" When they answered "water," I would say no -you are – because you have a brain and the ability to understand and change things that are wrong. Humans have endless creativity. We offer you the same hope that you will use that imagination and creativity to solve problems and find solutions.

In this Edition

- This updated text further examines water from global and historical perspectives with its
 roles today and in the development of civilizations. These chapters have been updated to
 include issues of importance to Indigenous peoples, climate change influences on existing
 issues, and current global population issues involving the right to and the need for water.
- The text moves into areas of science, with the hydrologic cycle, water chemistry, and water quality providing the fundamentals. These areas have been expanded or updated to include new developments, and anthropomorphic influences on our hydrologic cycle.
- Subjects that require more understanding are presented as In Depth sections. These are intended to interest the curious student.

Preface xiii

- The concepts of ecosystems are explored in chapters on watersheds, groundwater, lakes and ponds, rivers and streams, and wetlands. Sidebars and guest essays provide additional information and case studies.
- Human attempts to control natural systems are explored through the study of dams and structures. The importance of dams and reservoirs is considered as well as their consequences. This section includes updates on the global proliferation of dams since the first edition, in countries considered less developed, and water use in other energy production methods.
- The chapter on drinking water explores attempts to repair and restore damaged systems.
 Natural sources of pollution, as well as human-produced pollution, are discussed.
 Waterborne diseases and the complexities of their control are considered.
- Water law and water allocation are discussed. Who gets to use the water we have is a
 tremendously controversial subject, involving competing uses by cities, industry,
 endangered species, individuals, and the water source itself. Depleting groundwater or
 drying up a river is akin to killing the goose that laid golden eggs, but sometimes we don't
 think beyond right now.
- The roles of governments, and the various agencies they create, are presented primarily using the United States as an example. Case studies demonstrate positive and negative interactions of agencies all trying to do their jobs while competing for tax dollars.
- The final chapter summarizes the state of our Earth's water resources and encourages students to think about the future of water and humans as inseparable features. A final look at major issues from global climate change to competing personal values shows how much more there is to learn and the complexity of decisions that are still to be made.