CONTENTS

Acknowledgements page ix

Introduction 1
Overview of the Project 1
Methodology, Treatment of Sources, and Relationships of Thinkers Investigated 5
Overview of the Chapters 11

1 Conceptual Foundations 17
1.1 The Concepts of Kinēsis, Physis, and Natural Philosophy 17
 1.1.1 The Concept of Motion (Kinēsis) 17
 1.1.2 The Ancient Greek Conceptions of Physis and Natural Philosophy 27
 1.1.3 The Concept of Being 30
1.2 Criteria of Inquiry 31
 1.2.1 The Principle of Non-Contradiction 32
 1.2.2 The Principle of Excluded Middle 37
 1.2.3 The Principle of Sufficient Reason 39
 1.2.4 Rational Admissibility 46
 1.2.5 Saving the Phenomena 49
1.3 The Role of Logic 53
 1.3.1 Operators and Operands 55
 1.3.2 Negation and Identity as Operators 57
1.4 The Role of Mathematics: The Connection between Mathematics and Natural Philosophy 67
 1.4.1 The Use of Mathematics for Science in General 67
 1.4.2 How to Do Things with Numbers: Measurement and Countability 73

2 Parmenides’ Account of the Object of Philosophy 80
2.1 Introduction 80
2.2 Parmenides’ Criteria for Philosophy and His Logical Apparatus 83
 2.2.1 Criteria for Philosophy 83
 2.2.2 Logical Operators 92
2.3 Parmenides’ Logical Apparatus as Intimately Tied to His Ontology 103
2.4 Problems for the Very Possibility of Natural Philosophy 111
2.4.1 The Absence of Adequate Basic Concepts for Natural Philosophy 111
2.4.2 No Distinction between Operators and Operands 114
2.4.3 The Indeterminacy of Background Concepts 116
2.4.4 Problems with Relations 117

2.5 Relation to the Doxa Part: The Role of Cosmology 119

3 Zeno’s Paradoxes of Motion and Plurality 124

3.1 Introduction 124
3.2 The General Aim of Zeno’s Paradoxes 128
3.3 Parmenidean Inheritance 130
3.3.1 Advancing Parmenides’ Criteria 130
3.3.2 Deepening of the Challenge Parmenides Poses 134
3.4 The Fragments, Their Sources, and Their Connection 134
3.5 The Paradoxes of Plurality 136
3.6 The Paradoxes of Motion 143
3.6.1 The Dichotomy: Passing Infinitely Many Segments in a Finite Time 144
3.6.2 Achilles: A Variation of the Dichotomy Paradox 155
3.6.3 The Flying Arrow: Motion as a Sequence of Rests 156
3.6.4 The Moving Rows: Double the Time Is Half the Time 164
3.6.5 The Basic Problems of All Paradoxes of Motion 174

4 The Atomistic Foundation for an Account of Motion 176

4.1 Introduction 176
4.2 Eleatic Inheritance in the Atomists 178
4.2.1 Rational Admissibility 179
4.2.2 Consistency 182
4.2.3 The Principle of Sufficient Reason 183
4.3 Atomistic Changes 184
4.3.1 What Truly Is Must Explain the Phenomena 184
4.3.2 A Physical Theory 185
4.3.3 Change of Logical Operators 187
4.3.4 The Atomistic Account of What Is 190
4.3.5 New Physical Features and Their Functions 191
4.4 Consequences of the Atomistic Changes for Natural Philosophy 194
4.4.1 Reply to Eleatic Problems 194
4.4.2 Motion and Changes in the Atomistic Framework 198
4.4.3 Problems that Remain 200

5 The Possibility of Natural Philosophy According to Plato I: The Logical Basis 202

5.1 Introduction: The Investigation of the Natural World as an Eikôs Mythos 202
5.2 The Sophist 210
5.2.1 The Reinterpretation of Negation and the Connection Operator 211
5.2.2 The Reinterpretation of the Criteria for Philosophy 1: The Principle of Non-Contradiction and the Principle of Excluded Middle 225
5.2.3 Widening the Conceptual Possibilities 230
5.2.4 Possible Answers to Parmenides’ Problems 232
5.3 The Timaeus: Logical Advances 235
5.3.1 The Reinterpretation of the Criteria for Philosophy 2: The Principle of Sufficient Reason and Rational Admissibility 236
5.3.2 An Eikós Mythos 240

6 The Possibility of Natural Philosophy According to Plato II: Mathematical Advances and Ultimate Problems 245
6.1 Introduction 245
6.2 Introducing Mathematical Structures 246
6.3 Locomotion and Mathematical Structures 253
 6.3.1 Time and Eternity 253
 6.3.2 Time as the Measure of Motion 256
 6.3.3 Space as Excluded from the Measurement Process 266
6.4 Problems with a Simple Measure 269
 6.4.1 Restricted Comparability 274
 6.4.2 Lacking Consistency: The Tortoise Wins the Race 274

7 Aristotle’s Notion of Continuity: The Structure Underlying Motion 277
7.1 Introduction 277
7.2 Notions of Magnitude Influencing Aristotle’s Concept of a Continuum 284
 7.2.1 Parmenides’ Suneches 285
 7.2.2 Atomistic Notions of Magnitude 289
 7.2.3 A Mathematical Notion of Suneches 291
7.3 Aristotle’s Two Accounts of the Continuum 295
 7.3.1 Things Whose Limits Touch and Are One 296
 7.3.2 Things Being Divisible without Limits 299
7.4 Implications of Aristotle’s Concept of a Continuum 303
 7.4.1 A New Understanding of the Part-Whole Relation 305
 7.4.2 A New Twofold Concept of a Limit 311
 7.4.3 A New Conception of Infinity 328

8 Time and Space: The Implicit Measure of Motion in Aristotle’s Physics 335
8.1 The General Concept of Measure in Aristotle’s Metaphysics 337
 8.1.1 A Simple Measure: Being One-Dimensional and of the Same Kind as What Is Measured 338
 8.1.2 Comparison with a Modern Conception and the Relation between Counting and Measuring 344
CONTENTS

8.2 The Measure of Movement in Aristotle’s *Physics* 350
8.2.1 Time as a One-Dimensional Measure and Number of Motion 351
8.2.2 The Search for a Measure of the Same Kind as Motion 356
8.2.3 The Relation of Time and Space 374

9 Time as the Simple Measure of Motion 385
9.1 Other Accounts of Speed 385
9.2 Reasons Why Aristotle did not Explicitly Use a Complex Measure 393
9.3 Constructive Developments: A Résumé 403

* Bibliography 404
* Index Locorum 423
* General Index 426