THE CONCEPT OF MOTION
IN ANCIENT GREEK THOUGHT

This book examines the birth of the scientific understanding of motion. It investigates which logical tools and methodological principles had to be in place to give a consistent account of motion, and which mathematical notions were introduced to gain control over conceptual problems of motion. It shows how the idea of motion raised two fundamental problems in the fifth and fourth century BCE: bringing together Being and non-Being, and bringing together time and space. The first problem leads to the exclusion of motion from the realm of rational investigation in Parmenides, the second to Zeno’s paradoxes of motion. Methodological and logical developments reacting to these puzzles are shown to be present implicitly in the atomists, and explicitly in Plato, who also employs mathematical structures to make motion intelligible. With Aristotle we finally see the first outline of the fundamental framework with which we conceptualise motion today.

Barbara M. Sattler has taught at the University of St Andrews and is now Professor for Ancient and Medieval Philosophy at the Ruhr-Universität Bochum. She works mainly on metaphysics and natural philosophy in the ancient Greek world, with a particular focus on the Presocratics, Plato, and Aristotle.
THE CONCEPT OF MOTION
IN ANCIENT GREEK
THOUGHT

Foundations in Logic, Method, and Mathematics

BARBARA M. SATTLER
CONTENTS

Acknowledgements page ix

Introduction 1
 Overview of the Project 1
 Methodology, Treatment of Sources, and Relationships of Thinkers Investigated 5
 Overview of the Chapters 11

1 Conceptual Foundations 17
 1.1 The Concepts of Κίνησις, Φυσις, and Natural Philosophy 17
 1.1.1 The Concept of Motion (Κίνησις) 17
 1.1.2 The Ancient Greek Conceptions of Φυσις and Natural Philosophy 27
 1.1.3 The Concept of Being 30
 1.2 Criteria of Inquiry 31
 1.2.1 The Principle of Non-Contradiction 32
 1.2.2 The Principle of Excluded Middle 37
 1.2.3 The Principle of Sufficient Reason 39
 1.2.4 Rational Admissibility 46
 1.2.5 Saving the Phenomena 49
 1.3 The Role of Logic 53
 1.3.1 Operators and Operands 55
 1.3.2 Negation and Identity as Operators 57
 1.4 The Role of Mathematics: The Connection between Mathematics and Natural Philosophy 67
 1.4.1 The Use of Mathematics for Science in General 67
 1.4.2 How to Do Things with Numbers: Measurement and Countability 73

2 Parmenides’ Account of the Object of Philosophy 80
 2.1 Introduction 80
 2.2 Parmenides’ Criteria for Philosophy and His Logical Apparatus 83
 2.2.1 Criteria for Philosophy 83
 2.2.2 Logical Operators 92
 2.3 Parmenides’ Logical Apparatus as Intimately Tied to His Ontology 103
 2.4 Problems for the Very Possibility of Natural Philosophy 111
2.4.1 The Absence of Adequate Basic Concepts for Natural Philosophy 111
2.4.2 No Distinction between Operators and Operands 114
2.4.3 The Indeterminacy of Background Concepts 116
2.4.4 Problems with Relations 117
2.5 Relation to the Doxa Part: The Role of Cosmology 119
3 Zeno’s Paradoxes of Motion and Plurality 124
3.1 Introduction 124
3.2 The General Aim of Zeno’s Paradoxes 128
3.3 Parmenidean Inheritance 130
 3.3.1 Advancing Parmenides’ Criteria 130
 3.3.2 Deepening of the Challenge Parmenides Poses 134
3.4 The Fragments, Their Sources, and Their Connection 134
3.5 The Paradoxes of Plurality 136
3.6 The Paradoxes of Motion 143
 3.6.1 The Dichotomy: Passing Infinitely Many Segments in a Finite Time 144
 3.6.2 Achilles: A Variation of the Dichotomy Paradox 155
 3.6.3 The Flying Arrow: Motion as a Sequence of Rests 156
 3.6.4 The Moving Rows: Double the Time Is Half the Time 164
 3.6.5 The Basic Problems of All Paradoxes of Motion 174
4 The Atomistic Foundation for an Account of Motion 176
4.1 Introduction 176
4.2 Eleatic Inheritance in the Atomists 178
 4.2.1 Rational Admissibility 179
 4.2.2 Consistency 182
 4.2.3 The Principle of Sufficient Reason 183
4.3 Atomistic Changes 184
 4.3.1 What Truly Is Must Explain the Phenomena 184
 4.3.2 A Physical Theory 185
 4.3.3 Change of Logical Operators 187
 4.3.4 The Atomistic Account of What Is 190
 4.3.5 New Physical Features and Their Functions 191
4.4 Consequences of the Atomistic Changes for Natural Philosophy 194
 4.4.1 Reply to Eleatic Problems 194
 4.4.2 Motion and Changes in the Atomistic Framework 198
 4.4.3 Problems that Remain 200
5 The Possibility of Natural Philosophy According to Plato I: The Logical Basis 202
5.1 Introduction: The Investigation of the Natural World as an Eikós Mythos 202
5.2 The Sophist 210
 5.2.1 The Reinterpretation of Negation and the Connection Operator 211
5.2.2 The Reinterpretation of the Criteria for Philosophy 1: The Principle of Non-Contradiction and the Principle of Excluded Middle 225
5.2.3 Widening the Conceptual Possibilities 230
5.2.4 Possible Answers to Parmenides’ Problems 232
5.3 The Timaeus: Logical Advances 235
5.3.1 The Reinterpretation of the Criteria for Philosophy 2: The Principle of Sufficient Reason and Rational Admissibility 236
5.3.2 An Eikós Mythos 240

6 The Possibility of Natural Philosophy According to Plato II: Mathematical Advances and Ultimate Problems 245
6.1 Introduction 245
6.2 Introducing Mathematical Structures 246
6.3 Locomotion and Mathematical Structures 253
6.3.1 Time and Eternity 253
6.3.2 Time as the Measure of Motion 256
6.3.3 Space as Excluded from the Measurement Process 266
6.4 Problems with a Simple Measure 269
6.4.1 Restricted Comparability 274
6.4.2 Lacking Consistency: The Tortoise Wins the Race 274

7 Aristotle’s Notion of Continuity: The Structure Underlying Motion 277
7.1 Introduction 277
7.2 Notions of Magnitude Influencing Aristotle’s Concept of a Continuum 284
7.2.1 Parmenides’ Suneches 285
7.2.2 Atomistic Notions of Magnitude 289
7.2.3 A Mathematical Notion of Suneches 291
7.3 Aristotle’s Two Accounts of the Continuum 295
7.3.1 Things Whose Limits Touch and Are One 296
7.3.2 Things Being Divisible without Limits 299
7.4 Implications of Aristotle’s Concept of a Continuum 303
7.4.1 A New Understanding of the Part-Whole Relation 305
7.4.2 A New Twofold Concept of a Limit 311
7.4.3 A New Conception of Infinity 328

8 Time and Space: The Implicit Measure of Motion in Aristotle’s Physics 335
8.1 The General Concept of Measure in Aristotle’s Metaphysics 337
8.1.1 A Simple Measure: Being One-Dimensional and of the Same Kind as What Is Measured 338
8.1.2 Comparison with a Modern Conception and the Relation between Counting and Measuring 344
8.2 The Measure of Movement in Aristotle's *Physics* 350
 8.2.1 Time as a One-Dimensional Measure and Number of Motion 351
 8.2.2 The Search for a Measure of the Same Kind as Motion 356
 8.2.3 The Relation of Time and Space 374

9 Time as the Simple Measure of Motion 385
 9.1 Other Accounts of Speed 385
 9.2 Reasons Why Aristotle did not Explicitly Use a Complex Measure 393
 9.3 Constructive Developments: A Résumé 403

Bibliography 404
Index Locorum 423
General Index 426
ACKNOWLEDGEMENTS

For a long time the fate of this book resembled that of Achilles’ competition with the tortoise – while the point of accomplishment was clearly in sight, it seemed the finishing line would never be crossed. The length of the race is evident from the fact that some crucial ideas go back to my PhD thesis.¹ Some chapter sections overlap with articles I have published in the meantime, but these articles explore or develop individual points.² A full view of my subject can be found only here.

While the project seemed to move with the speed of a tortoise, I was lucky in receiving a wealth of support, for which I am immensely grateful. First and foremost, I want to thank those people who committed the time and effort to read the entire manuscript: Sarah Broadie, whose comments always pushed me to dig deeper into the philosophical problems; Ken Winkler, who is perhaps the most careful and subtle reader I have ever known; and Michael Della Rocca, the most generous monist around.

Furthermore, I want to thank Verity Harte, from whom I learned so much about framing, for reading chapters 2–4 and 7–9. Both Henry Mendell and Stephen Menn read several chapters and gave me valuable feedback, especially on ancient science and mathematics. Individual chapters or sections profited from comments from Andrew Gregory, Larry Horn, Arnaud Macé, Malcolm Schofield, Michalis Sialaros, Stewart Shapiro, Katja Vogt, and readers for the press.

I also want to thank Rona Johnston for helping me with my English in a way that always occasioned learning more about the English language in general, Cady Crowley for help with the index, and Hilary Gaskin for handling the manuscript for CUP so quickly, professionally, and flexibly.

¹ Material from chapters 7, 8, and 9, as well as the second half of Chapter 3, and the last part of Chapter 5. My doctoral thesis, titled “The Emergence of Motion”, can be read on microfiche at the library of the FU-Berlin and at a couple of other German libraries.

² Section 1.3.2.1.1 in Chapter 1 and parts of chapter 2 overlap with Sattler 2011; section 3.6.4 in Chapter 3 with Sattler 2015 and a subsection of 3.6.1 with Sattler 2019b; section 7.2.1 in Chapter 7 with Sattler 2019a; and sections 1.4.2 in Chapter 1 and 8.1 and 8.2.3 in Chapter 8 with Sattler 2017a.
Finally, I want to thank my brother Wolfgang Sattler, my dear friends Michael Della Rocca and Justin Broackes, and my partner Marcus Lala for emotional support during what turned out to be, unrelated to my work, very difficult times.

Dem liebenden Andenken an Ulrich Bergmann gewidmet – ohne ihn wäre dieses Buch nie begonnen worden.