

Cambridge University Press 978-1-108-74462-1 — Brain Fables Alberto Espay , Benjamin Stecher Index More Information

## Index

AD. See Alzheimer's disease aducanumab, 100-101 age, prevalence of PD, 21 Alessi, Dario, 7, 68 Aligning Science Across Parkinson's (ASAP), 144-146 alpha-synuclein animal models, 45 biomarker, 73, 74-75 combined with other markers, 75-76 cause of PD, 8-9, 17-18, 44-45, 46-50, 52 may be protective, 49-50 SNCA mutations, 15, 44-45 therapeutic target, 52 unknowns, 123 alternative medicine, 5-6, 30 Alzheimer's disease (AD) A/T/N diagnostic model, 113-117 brain protein pathology causative or protective?, 41-42, 46-48, 51, 59-63, 65, 95-96 co-pathology with PD, 42–43, 57, 64, 103 discrepancy between scientific and lay view of the disease, 111–112 funding for research, 96, 97 prodromal phase, 62, 97-100 treatment, 51, 96-101, 112-113, 116-117 amyloid, 41-42 anti-amyloid therapies, 51, 96-101, 112-113, 116 - 117cause or effect?, 46-48, 51, 59-63, 65, 95-96, 112-113 marker of AD, 111, 113-117 PD, 74 protective strategy, 65, 117 sleep deprivation, 123 amyloid precursor protein (APP), 95-96

animal models, 14, 45, 64-65, 139-141 anosmia, 17 apolipoprotein E, 60 apoptosis, 129 astronomy, 118 AUC (area under the ROC curve), 75 Awakenings (film), 12 beta-amyloid. See amyloid big data, 34, 76, 78-79 biomarkers, 71-79 alpha-synuclein, 73, 74-75 amyloid, 111, 113-117 combinations, 75-76 definition, ix do not correlate with clinical subtype, 25-26, 36, 73-75, 149 Lewy bodies, 2, 16, 44 population studies, 133-135, 141, 149 PPMI, 25, 73, 78 tau, 73, 75 Bloem, Bas, 54 Braak hypothesis, 16-18, 50 Bradford Hill criteria, 46-48 brain bank studies, 34-36, oldest old, 59-63 breast cancer, 81, 82, 127 Brin, Sergey, 145 Burke, Robert, 18, 48-50 cancer, 81-83, 127 cardiovascular disease, 112 Carlsson, Arvid, 11 Carrillo, George, 13 causes of neurodegenerative diseases AD, 46-48, 51, 59-63, 95-96 in an individual, 21-22 alpha-synuclein misfolding, 8-9, 15, 17-18, 44-45, 46-50,

dopamine deficiency, 11, 17 genetic, 15, 18-19 MPTP, 13-14 cell biology, complexity of, 128-131 Chan Zuckerberg Initiative (CZI), 146 Charcot, Jean-Martin, 2 Chinese medicine, 5-6 chronic traumatic encephalopathy, 65 Church, George, 7 Cincinnati Cohort Biomarker Program, 135 clinical trials AD research, 116-117 future directions, 139-141, 143, 149 negative results, 51, 87-89, 100, 106-107, 112-113 recruitment, 69, 100 clinico-pathologic model of disease, 27, 57-58 to be replaced by systems biology approach, 139 - 142coenzyme Q, 89 cognitive resilience, 62-63, 64, 65 colon, 17 Contursi family, 15 Cotzias, George, 11-12 crenezumab, 97 Cure Parkinson's Trust (CPT), 143 cystic fibrosis, 127 De Novo Parkinson (DeNoPa) program, 73

deep brain stimulation, 92

definition of PD, need for

42 - 43

Parkinson's disease

dementia

revision, 25-29

dementia with Lewy bodies,

dementia, 42-43, 44



Cambridge University Press 978-1-108-74462-1 — Brain Fables Alberto Espay , Benjamin Stecher Index <u>More Information</u>

Index

161

| with/without AD pathology,                         | Jack, Clifford, 113                                 | Muhammed Ali, xi                                     |
|----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|
| 59–63, 113–117<br>diagnosis                        | journals (scientific), 53–54,<br>84                 | Myerson's sign, 13                                   |
| autopsy as the gold standard,                      |                                                     | neurofibrillary tangles (tau                         |
| 41–42, 63                                          | Kandel, Eric, 84                                    | aggregation), 41–42,                                 |
| by clinical criteria, 25–29                        | Knopman, David, 97                                  | 46–48, 95                                            |
| dopamine, 11–12, 17, 87<br>levodopa, 11–12, 33, 92 | Kolata, Gina, 57                                    | norepinephrine, 87                                   |
| dopamine-producing cells,                          | Kordower, Jeffrey H., 8<br>Krauthammer, Charles, 31 | Nussbaum, Robert, 15                                 |
| 48–50, 129                                         | Riadilaminer, Charles, 31                           | odds ratio (OR), 61-62                               |
| Drawing Hands (Escher), 55                         | Lang, Anthony E., 69, 126                           | oldest old studies, 59–63                            |
| dual reality, 1, 5–7                               | Langston, J. William, 13                            | oncology, 81-83, 127                                 |
| Duck of Vaucanson, 26                              | Lashual, Hilal, 53                                  | open science, 84–85                                  |
| Duvoisin, Roger, 15                                | LCT (Linked Clinical Trials) Program, 143           | Osler, Sir William, 27                               |
| epidemiology of PD, 21                             | Lee, Virginia, 123                                  | Palfreman, Jon, 67                                   |
| European Parkinson's Therapy                       | Lees, Andrew, 38–39                                 | paraquat, 14                                         |
| Centre, 137                                        | levodopa, 11–12, 33, 92                             | Parkinson, James, 1–2                                |
| exercise, 136–137                                  | Lewy bodies/Lewy pathology,                         | Parkinson's disease (PD)                             |
| familial PD, 15                                    | 2, 16, 44, 65<br>Linked Clinical Trials (LCT)       | alpha-synuclein aggregation/<br>misfolding, 8–9, 15, |
| Framingham study, 112                              | Program, 143                                        | 17–18, 44–45, 46–50, 52                              |
| funding of research, 7, 96,                        | LRRK2 (leucine-rich repeat                          | may be protective, 49–50                             |
| 97, 144                                            | kinase 2), 68                                       | animal models, 14, 45, 64-65                         |
|                                                    | Luk, Kelvin, 8                                      | biomarkers, 73, 74-76                                |
| Gan-Or, Ziv, 108                                   | lumbar puncture,                                    | case study, 43–44                                    |
| Gatto, Emilia, 25                                  | uncomfortable, 78                                   | co-pathology with AD,                                |
| GBA (glucocerebrosidase),<br>64–65, 108, 144       | McBrido Hoidi 120 130                               | 42–43, 57, 64, 103                                   |
| genetics                                           | McBride, Heidi, 129–130<br>Merchant, Kalpana, 144   | diagnosis, 41–42<br>genetics                         |
| AD, 60, 95–96                                      | Michael J Fox Foundation                            | GBA, 64-65, 108                                      |
| cystic fibrosis, 127                               | (MJFF), 71, 77                                      | GWAS studies, 18-19, 108                             |
| genes as therapeutic targets,                      | PPMI study, 25, 73, 78                              | LRRK, 2, 68                                          |
| 108–109                                            | Mitchell, Kevin, 125–126                            | PRKN, 49                                             |
| PD                                                 | mitochondria, 89, 128–130                           | SNCA, 15, 44–45                                      |
| GBA, 64–65, 108, 144                               | models of disease, 57–69, See                       | in history, 1–3, 146                                 |
| GWAS studies, 18–19, 108<br>LRRK, 2, 68            | also animal models clinico-pathologic (single       | Lewy bodies, 2, 16, 44, 65<br>MPTP-induced, 13–14    |
| PRKN, 49                                           | disease) model, 27,                                 | one disease or many?, 25–29,                         |
| SNCA 15, 44-45                                     | 57–58                                               | 105–107, 139–142                                     |
| geocentrism, 118                                   | in oncology, 81-83, 127                             | prevalence, 21                                       |
| glucocerebrosidase (GBA),                          | proteinopathy, 2-3, 17-18,                          | prodromal phase, 17                                  |
| 64–65, 108, 144                                    | 41–52, 57–58                                        | progression, 33, 34–36, 38,                          |
| Golbe, Lawrence, 15                                | absence of contrary                                 | 43-44                                                |
| Greenamyre, Timothy, 106                           | evidence, 123                                       | monitoring, 77<br>need for markers, 108–109          |
| Harari, Yuval Noah, 1, 6–7                         | systems biology (multi-<br>disease) model, 28,      | puzzle concept, 18                                   |
| Hartings, Jed, 126                                 | 139–142                                             | subtypes, 25–26, 33–34                               |
| head trauma, 65, 126                               | implications for                                    | treatment. See treatment,                            |
| Hornykiewicz, Oleh, 11                             | treatment, 87, 106                                  | for PD                                               |
| Human Cell Atlas, 146                              | overlap with single disease                         | Parkinson's disease dementia,                        |
| hypertension, 112                                  | model, 105–107                                      | 42–43, 44                                            |
| IGPP Consortium, 108                               | MPTP (1-methyl-4-phenyl-                            | Parkinson's Progression<br>Markers Initiative        |
| intellectual property, 85                          | 1,2,5,6-<br>tetrahydropyridine),                    | (PPMI), 25, 73, 78                                   |
| property, oo                                       | 13–14                                               | patents, 85                                          |
|                                                    | •                                                   | 1                                                    |



Cambridge University Press 978-1-108-74462-1 — Brain Fables Alberto Espay , Benjamin Stecher Index More Information

## 162

Index

patient-centered research, 85 to be replaced by systems implications for treatment, biology approach, 87, 106 PD. See Parkinson's disease personalized medicine, 68, 83, 139 - 142overlap with single disease Reed, Alex, 137 model, 105-107 103, 141, 148-149 research pharmaceutical industry, 90-93, 100-101, 144 funding, 7, 96, 97, 144 Tanenbaum Open Science overspecialization, 58-59, 84 Institute, 85 phenotype of PD. See problems with, 53-54, tau, 41-42, 46-48, 95 symptoms 84, 103 as a biomarker, 73, 75 physical exercise, 136-137 population studies splitters vs lumpers, 67 combined with other markers, 75-76 and biomarker suggestions for change, identification, 133-135, chronic traumatic 84-85 Riggare, Sarah, 77 encephalopathy, 65 141, 149 toxins (MPTP), 13-14 Framingham study, 112 traditional Chinese Schekman, Randy, 53-54, PPMI, 25, 73, 78 postural instability-gait 145-146 medicine, 5-6 disorder (PIGD), Scherzer, Clemens, 108-109 trajectory of PD, 33, 43-44 Schwartz, Thomas, 129 traumatic brain injury, 65, 126 25-26, 34 PPMI (Parkinson's Progression sensitivity, 63 treatment Markers Initiative), 25, Sherer, Todd, 38, 77 for AD, 51, 96-101, 116-117 Silverstein Foundation, 144 for PD alpha-synuclein sleep deprivation, 123 precision medicine, 68, 83, 103, 141, 148-149 smell, loss of sense of, 17 targeted, 52 Prevail Therapeutics, 144 SNCA, 15, 44-45, See also deep brain stimulation, prevalence of PD, 21 alpha-synuclein 92 solanezumab, 97 prion disease, 17-18, See also dopamine replacement, specificity, 63 11-12, 33, 87, 92 proteinopathy model PRKN (parkin), 49 spermidine, 45 exercise, 136-137 prodromal phase spinal taps, uncomfortable, 78 experts' best bets, 8 failures, 81, 87-89, 148 Stamford, Jon, 85 AD, 62, 97-100 Stefanis, Leonidas, 49 fake, 5-6, 30-31 PD, 17 progression of PD, 33, 34-36, stem cells, 30-31, 128 implications of multi-Stott, Simon, 8-9 disease model, 87, 106 38, 43-44stroke, 126 research initiatives, 143 monitoring, 77 substantia nigra, 13, 65 need for markers, 108-109 subtype-specific, 68–69, 139, 148 proteinopathy model, 2-3, subtypes, 33–39 and biomarkers, 25-26, 36, role of the pharmaceutical 17-18, 41-52, 57-58 absence of contrary 73-75, 149 industry, 90-93, population studies can 100-101, 144 evidence, 123 psychiatry, 125-126 identify, 112 tremor dominant (TD) disease, 25-26, 34 treatment must be subtypepublication of research, specific, 68-69, 139, 148 53-54, 84 Sulzer, David, 129 Unified Parkinson's Disease Quackenbush, John, 109 symptoms, 25-26, 30, 33, Rating Scale 43-44 (UPDRS), 77 quality of life, 91-92 as observed by Raphael, Karen, 136-137 Parkinson, 1-2 verubecestat, 97 systems biology (multi-disease) reductionism, 26-28, 84, 125-127 model, 28, 139-142 Zuckerberg, Mark, 146