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Preface

This tract is perhaps written in a more didactic manner than others in the series,

but its motivating purpose is largely the same: to acquaint its readers with

important aspects of thought within the philosophy of mathematics. I would

like to thank Jeremy Avigad, Kathleen Cook, Rachael Driver, Anil Gupta,

Julliette Kennedy, Michael Liston, Penelope Maddy, and Stewart Shapiro for

helpful comments on these topics.

1 Suggestions from the Symbols

But now the way seems open to us, still further to generalize the Abstract

Geometry, with the help of suggestions arising from the symbols themselves,

using the words point, line, etc., in a proper sense consistent therewith. . . . Two

questions naturally arise: (1), Is there any geometrical utility in this extension? (2),

Is it legitimate to use the postulated properties of the abstract points, lines, etc., in

order to prove relations existing among the real points, lines., etc., that is, relations

which can be stated without any reference to the abstract elements? . . . [And] it

may be said, briefly, that experience has amply shewn that the gain in the generality

of the statements of geometrical fact, and the increased power of recognizing the

properties of a geometrical figure, enormously outweigh the initial feeling of

artificiality and abstractness. . . . [T]he introduction of [extra] elements may well

have assisted the constructive faculty [of ingenuity]; that this may happen is,

indeed, one of the discoveries of the history of reasoning.

H. F. Baker (1923, pp. 143–44)

Mathematicians and philosophers hope that their proposals will remain

unblemished forever: permanent monuments of truth chiseled from the imper-

meable rock of a priori necessity. They can cheerfully concede that future

generations may place their results within wider frameworks that seem more

accommodating or practical, for any Gauss or Kant should acknowledge that

their specific findings can be fit within conceptual contexts that they had not

anticipated. Nevertheless, such authors can remain confident that their ori-

ginal discoveries will remain as unperishable truths even within these

enlarged surroundings. “A diamond is forever,” runs the old jewelry adver-

tisement, and the same assurance applies to the accumulated gems of math-

ematical and philosophical discovery. Physicists, biologists, economists, and

other human creatures must recognize that everything they propose will be

eventually overturned, but mathematicians and philosophers need not harbor

comparable fears, as long as they have remained properly diligent in their

methodological rigors.

But does this vein of thinking constitute a self-flattering illusion? Jurist

Oliver Wendell Holmes Jr. thought so: “[L]ogical method and form flatter that
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longing for certainty and for repose which is in every humanmind. But certainty

generally is illusion, and repose is not the destiny of man” (1897, p. 3).

The purpose of this Element is to survey some of the challenges that the

natural enlargements of domain to which mathematics has been continually

subjected pose with respect to this conception of apriorist necessity. (These

foundational adjustments are often labeled as “changes in setting.”)

Operationally, the developmental pressures that prompt these shifts come into

play when mathematicians attempt to establish a deductive pathway linking

locations A and B and discover that their journey will be greatly facilitated if

they are allowed to travel through intermediate locations C, lying outside of the

boundaries in which the task was originally posed.

An early example arose as sixteenth-century mathematicians attempted to

find real number solutions to cubic equations such as x3 + px + q = 0. (Prizes

were awarded to contestants who could produce such answers in the quickest

time.) In 1545, through brute symbolic manipulations, G. Cardano arrived at the

formula we would write today as:
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In suitable circumstances, this supplies the desired roots. However, the two

cubic roots in Cardano’s formula seemingly designate “impossible” (= com-

plex) values in many cases, even if these “impossibilities” eventually cancel out

when added together. These “impossible values” comprise examples of the

useful, out-of-country locations featured in our geographical analogy. We will

survey a range of cases of this sort (a good history is provided by Katz and

Parshall 2014.)

Figure 1. Out-of-country elements
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As it happens, most of us have become inured to negative and imaginary

numbers from high school algebra, viewing them as unproblematic extracts

from “the world of mathematics,”without realizing that long into the nineteenth

century both items were warily regarded as computational instrumentalities

lacking coherent significance. Up to the time of Kant (more or less), the

traditional realms of “geometry” and “number” were regarded as the only

domains in which the synthetic a priori reasonings of the mathematical sciences

can be reliably set. To disarm the present-day complacencies bred by subse-

quent familiarity, we must first recover the intellectual shock that nineteenth-

century observers often expressed when they were first presented with some of

these “innovative” changes. For many of us, the strange “extension elements”

that mathematicians added to regular Euclidean geometry in the first part of the

nineteenth century1 can still serve this purpose if we have not studied the

modern subject of “algebraic geometry,” in which these novel ingredients are

now central ingredients. Absent such a background, the resulting claims will

likely strike many of us as bizarre, viz. the proposition that two apparently non-

overlapping circles secretly intersect in four points: two of them regular imagin-

ary and two additional “circular points” on the line at infinity. (We will review

the motivating rationale for these weird claims in a moment.) In 1883, one of the

prominent developers of these dark arts, the mathematician Arthur Cayley,

called for a philosophical examination of their rationale:

[T]he notion which is really the fundamental one (and I cannot too strongly

emphasize the assertion) underlying and pervading the whole of modern

analysis and geometry [is] that of imaginary magnitude in analysis and of

imaginary . . . points and figures in geometry. This [topic] has not been, so far

as I am aware, a subject of philosophical discussion or inquiry . . . [E]ven [if

our final] conclusion were that the notion belongs to mere technical mathem-

atics, or has reference to nonentities in regard to which no science is possible,

still it seems to me that as a subject of philosophical discussion the notion

ought not to be this ignored; it should at least be shown that there is a right to

ignore it. (1889, p. 433)

And the answer Cayley himself suggests sounds disconcertedly mystical in its

invocation of Plato’s cave:

That we cannot “conceive” [of “purely imaginary objects”] depends on the

meaning which we attach to the word conceive. I would myself say that the

purely imaginary objects are the only realities, the ὄντως ὄντα (“the realities

that really exist”), in regard to which the corresponding physical objects are

1 This period is frequently labeled as the “projective geometry revolution.” It should not be

confused with the non-Euclidean geometry that became popular later, which actually raises

fewer methodological puzzles in its wake.
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as the shadows in the cave; and it is only by means of them that we are able to

deny the existence of a corresponding physical object; if there is no concep-

tion of straightness, then it is meaningless to deny the existence of a perfectly

straight line. (1899, p. 433)

Soon thereafter, a range of contemporaneous philosophers (e.g., Ernst

Cassirer and Bertrand Russell) actively engaged with Cayley’s concerns,

often in relatively unsatisfactory ways. But independently of their academic

proposals, virtually every working mathematician of the late nineteenth century

needed to ponder these methodological issues in some manner or other, if only

to realign their own investigative compasses along the axes of fruitful inquiry

that were dramatically restructuring the subjects in which they worked. In this

Element, we will particularly focus on the intriguing methodological sugges-

tions found in the pithy remarks offered on these topics by the great nineteenth-

century algebraist Richard Dedekind, whose methodological shadow has

loomed over mathematical practice ever since.2 Some of his central themes

have been largely overlooked by his modern admirers, despite the fact that they

paint a portrait of the mathematical enterprise that remains entirely pertinent to

our own era – or so this brief tract will argue.

C. F. Gauss designated mathematics as “the queen of the sciences” (dis-

placing theology from its former pride of place), and by equal rights, the

philosophy of mathematics ought to perch upon a comparable throne within

philosophy as well. And that was the prestige with which philosophers of earlier

times accorded its methodological concerns. Today, however, the subject has

lost much of its former allure, and academic consideration has largely thinned

into wan disquisitions on “naturalism” and “ontological commitment.” As

a result, the puzzles of innovative practices have become relegated to the

sidelines of specialized concern, bearing little anticipated relevance to the

central concerns of language, metaphysics, or the wider stretches of science.

This Element will argue that this demotion is a mistake; an adequate appreci-

ation of the motivational factors that drive mathematics to continually reshape

old domains into considerably altered configurations ought to remain a central

ingredient within our attempts to gauge the conceptual capabilities of human

thought more generally.

Workingmathematicians, of course, cannot afford to ignore the reconstitutive

adjustments that continually redirect their disciplines in unexpected directions,

for their academic standing may depend upon their ability to convince their

colleagues that their innovations represent “the right way to proceed.”However,

a distaste for the disputes about “abstract objects” and so forth that dominate

2 Emmy Noether: “Es steht alles schon bei Dedekind.”
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current philosophical discussion has induced a profound horror philosophiae

within mathematical circles, which frequently invoke simple formalist excuses

(the “if-thenism” of Section 5) that allow them to beg off “waxing philosoph-

ical” in a manner they distrust.

Unfortunately, the considerations that guide research within modern math-

ematics have become forbiddingly technical, and an adequate mastery of their

motivating threads is hard to obtain. To evade these pedagogical obstacles, this

Element will largely concentrate on an assortment of easier-to-explain nine-

teenth-century adjustments in which the winds of innovation altered traditional

mathematical landscapes substantially. An excellent starting point lies with

those funny points of non-intersecting “intersection” mentioned earlier (which

also represents one of the central cases that Cayley worried about).

The main impulse came from algebra. Descartes’s innovations within what

we now call “Cartesian geometry” forged unexpected pathways between the-

orems that could not be obtained through traditional Euclidean proof tech-

niques. For example, ellipses, parabolas, and hyperbolas strike us as rather

similar in their animating behaviors, but the Euclidean proofs required to

establish that these facts differ significantly. In contrast, the same relationships

can be established within Cartesian geometry by calculations directed to their

common equation Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, if we are allowed to

factor this expression into expressions that lack any obvious significance. But

how can we trust a proof if we do not understand what its intermediate steps

mean? These considerations prompted synthetic geometers such as J.-V.

Poncelet to wonder if similar (yet intelligible) pathways of easy reasoning

could not be established as proper to geometry if its internal dominions were

extended through defensible policies for extending a preexistent domain.

Indeed, supplementary “points at infinity” had already become familiar as the

“horizons” and “vanishing points” within a perspective drawing.

Figure 2. Points at infinity
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Poncelet realized that these supplementary objects could be harnessed to

significant inferential advantage if we allow ourselves to reason about these

“lines and points at infinity” as if they represented regular Euclidean ingredi-

ents. From this extended point of view, the mysteriously similar behaviors of

ellipses and hyperbolas can be explicated by simply dragging an ellipse across

the line at infinity until it appears as if it has become split into two pieces.3 By

allowing parallel lines to intersect at such “points of infinity,” we can likewise

avoid annoying distinctions in our proofs between lines that cross somewhere

and those that do not.

Allied pathways of improved reasoning similarly rationalize the strange

“imaginary points” mentioned previously, for reasons that I will sketch shortly.

But do we not risk spoiling the a priori certainties of the traditional Euclidean

realm by rashly introducing these “extension element” supplements? It would

likewise make algebraic calculations simpler if we could assign a factor such as

“6/0” a convenient numerical value, but it proves impossible to do so without

opening a door to harmful contradictions (i.e., the mere acceptance that “6/0”

possesses a value immediately allows one to prove that “0 = 1”). Poncelet

plainly requires some more sophisticated form of methodological justification

for his innovations than the crudely pragmatic “They allow me to reach nice

results quickly.” Over the course of this Element, we will examine a succession

of proposals to this purpose. We can begin with Poncelet’s own justificatory

offering, based upon a principle that he dubbed “the permanence of mathemat-

ical relations” (other authors call it “persistence of form”):

Is it not evident that if, keeping the same given things, one can vary the

primitive figure by insensible degrees by imposing on certain parts of the

figure a continuous but otherwise arbitrary movement, is it not evident that

the properties and relations found for the first system, remain applicable to

successive states of the system, provided always that one has regard for

certain particular modifications that may intervene, as when certain quantities

vanish or change their sense or sign, etc., modifications which it will always

be easy to recognize a priori and by infallible rules? . . . Now this principle,

regarded as an axiom by the wisest mathematicians, one can call the principle

or law of continuity for mathematical relationships involving abstract and

depicted magnitudes. (1822, p. 19)

3 Florian Cajori (1919, p. 62) characterizes the disadvantages of traditional Euclidean geometry as

follows:

The principal characteristics of the ancient geometry are:

(1) Awonderful clearness and definiteness of its concepts and an almost perfect logical rigor of

its conclusions.

(2) A complete want of general principles and methods.
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Here is how these notions operate in the context of our “imaginary” geomet-

rical points. Projective geometry asks how images adjust when an originating

slide (say, a picture of a cat’s head inscribed on the sides of a sphere C) is

projected onto varying screens. As this occurs. the ears, mouth, and so forth will

distort considerably as the image plane L is moved to different positions relative

to a lamp B. However, certain abstract characteristics of the image must remain

preserved within all of these placements. (Otherwise, we would not be able to

recognize that “it’s the same cat” throughout.) The projective geometers dis-

covered that this “invariant” could be explained in terms of a geometrical

relationship called a “cross-ratio.” In Figure 3, I have tried to illustrate this

construct in the upper sequence of diagrams, although the exact details are not

important for our purposes.

We carve out a two-dimensional slice of our arrangements and consider

how the projected image appears on our “screen” (the line L). By allowing

light to travel backward across the line at infinity (!), two projected cat images

will always appear on L. When a complete cat head fits inside the circle

C connecting to our lamp B, we can locate an important exterior point

P called the pole of the construction by drawing tangents from the two places

where C intersects L (which is then called the polar of P). We can then

correlate the respective parts of our two cat heads by a suitable

mapping m called an involution. The two positions where L intersects

C constitute fixed points of m in the sense that m maps these positions to

themselves as self-corresponding. The cross-ratio invariant we seek can then

be explicated in terms of the invariant manner in which the correlated cat

features cluster together around these two fixed points. (This pattern repre-

sents a generalization of a “harmonic division” within traditional geometry.)

As a result, the two fixed points represent the central “controlling points”

around which the rest of the construction arranges itself.
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Figure 3. Pole and polar movement
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What happens if we now push the pole point P toward the interior of C? In

particular, what happens to the polar line L? It will gradually move outward

until it passes through a transition stage where L is tangent to C and its two

fixed points coincide. Pushing P fully inside C, we reach an altered scenario in

which the polar line L now lies outside of C, yet a similar involution

pairing m between the cat parts remains well-defined (i.e., their cross-ratio

remains the same). Butm’s controlling fixed points have apparently vanished

from the scene.

Or have they merely become invisible? Here’s where Poncelet’s “perman-

ence of relationships” principle enters the story. Examine our successive P/L

drawings as if they comprise successive frames within a motion picture film.

The resulting montage supplies an evolving picture of integrated movement,

much like we would witness in a film of an actual cycling mechanism, such as

the Cardan gearing illustrated in Figure 4.

We previously noted that the original fixed points of the mappingm gradually

move closer together until they fuse and seemingly disappear. Poncelet’s prin-

ciple contends that this “disappearance” is only apparent, because all of the

other pole/polar/involution relationships remain intact, albeit altered in appear-

ance. Our two fixed points have merely become “imaginary” by moving out of

the plane of our paper, explaining why they can no longer be readily pictured

within a conventional visual representation. Nonetheless, these imaginary fixed

points continue to “control” the rest of the associated pattern (operating “from

an astral plane” as it were). These same supplementary points also supply the

mysterious “intersections” between non-overlapping circles to which I earlier

alluded. However, a proper justification of their utility in Poncelet’s manner

requires consideration of the “persisting relationships” evident within

a sequence of machine-like movements of the type illustrated.

By successively enlarging the dominions of traditional geometry in this man-

ner, nineteenth-century geometers felt that they had quasi-inductively stumbled

Figure 4. Machine movement
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onto some hidden Platonic reality that renders the surface relationships of trad-

itional geometry coherent. In 1832, the German geometer Jakob Steiner declared:

The present work contains the final results of a prolonged search for

fundamental spatial properties which contain the germ of all theorems,

porisms and problems of geometry so freely bequeathed to us by the past

and the present... It must be possible to find for this host of disconnected

properties a leading thread and common root that would give us

a comprehensive and clear overview of the theorems and better insight

into their distinguishing features and mutual relationships. . . . By a proper

appropriation of a few fundamental relations one becomes master of the

whole subject; order takes the place of chaos, one beholds how all parts fit

naturally into each other, and arrange themselves serially in the most

beautiful order, and how related parts combine into well-defined groups.

In this manner one arrives, as it were, at the elements, which nature herself

employs in order to endow figures with numberless properties with the

utmost economy and simplicity. (1832, p. 315)

In 1857 the president of Harvard, Thomas Hill, rhapsodized similarly:

The conception of the inconceivable [imaginary], this measurement of

what not only does not, but cannot exist, is one of the finest achievements

of the human intellect. No one can deny that such imaginings are indeed

imaginary. But they lead to results grander than any which flow from the

imagination of the poet. The imaginary calculus is one of the master keys

to physical science. These realms of the inconceivable afford in many

places our only mode of passage to the domains of positive knowledge.

Light itself lay in darkness until this imaginary calculus threw light upon

light. And in all modern researches into electricity, magnetism, and heat,

and other subtle physical inquiries, these are the most powerful instru-

ments. (1857, p. 265)

And these same advantages accrue to the even stranger schemes and divisors

characteristic of modern algebraic geometry:

Our examples show the surprisingly wide range of possible behavior . . ., and

the apparent jungle of possibilities leads to a basic question: Where are the

nice theorems?

A fundamental truth [then] emerges: to get nice theorems, algebraic

curves must be given enough living space. For example, important

things can happen at infinity, and points at infinity are beyond the

reach of the real plane. We use a squeezing formula to shrink the entire

plane down to a disk, allowing us to view everything in it. This picture

leads to adjoining points at infinity, and in one stroke all sorts of

exceptions then melt away. We [will] enhance the reader’s intuition

through pictures showing what some everyday curves look like after

squeezing them into a disk.
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Continuing [our] quest for nice theorems, [we] once again [find that] the

answer lies in giving algebraic curves additional living space – in this case we

expand from the real numbers to the complex. Working over them, together

with points added at infinity, we arrive at one of the major highlights of the

book, Bézout’s theorem. This is one of the most underappreciated theorems in

mathematics, and it represents an outstandingly beautiful generalization of

the Fundamental Theorem of Algebra. (Kendig 2010, p. ix)

On the other hand, a large number of later mathematicians were troubled by

the mystical forms of Platonic appeal that such assertions invoke:

[Otto Hesse regarded Steiner’s later period] as marked by his struggle with the

imaginary, or as Steiner liked to say, his quest to seek out those “ghosts” that

hide their truths in a strange geometrical netherworld.4 (Rowe 2018, p. 64)

In later sections, we will review how subsequent methodologists attempted to

convert Poncelet’s worthy (yet dodgy) appeals to the “persistence of relation-

ships” into more rigorous forms of methodological justification.

But we should also observe that such “changes in setting” are not completely

irrevocable. Felix Klein comments upon the worthy topics left behind:

In one respect, of course, the Plücker formulas, in spite of their great

generality, do leave some problems open: they yield nothing about the

separation of the real from the imaginary. Even though abstract thought

was indifferent to these questions for decades, they are still of the greatest

interest to those who seek the true geometric shape of the varieties. It must be

regarded as an aberration of modern geometry that the importance of this

question is everywhere denied. . . . Plücker was no “projectivist” in the true

sense. In the style of the old geometers of the 18th century he clung to the

concrete, investigating [matters] . . . all of whose significance vanishes from

the purely projective viewpoint.5 (1926, p. 114)

Indeed, those old problems have reemerged within the modern context of robot-

ics, in which we need to compute the locations where an automaton is likely to

bump into the tables and chairs around it. Learning about their imaginary

intersection points in the projective manner is not very helpful in this context.

(More correctly, the projective extension elements may still prove useful in these

pursuits, but only as halfway houses to the results we really need.)

As remarked earlier, most of us now regard the employment of complex and

negative numbers within algebra as “old hat” and not particularly demanding of

4 Compare (Klein 1908, p. 187): “To Steiner, imaginary quantities were ghosts, which made their

effect felt in some way from a higher world without our being able to gain a clear notion of their

existence.”
5 The formulas cited do not distinguish the real points of intersection between two figures from their

“imaginary” crossings.
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