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Abstract

Clique-width is a well-studied graph parameter owing to its use in understanding
algorithmic tractability: if the clique-width of a graph class G is bounded by a con-
stant, a wide range of problems that are NP-complete in general can be shown to be
polynomial-time solvable on G. For this reason, the boundedness or unboundedness of
clique-width has been investigated and determined for many graph classes. We survey
these results for hereditary graph classes, which are the graph classes closed under tak-
ing induced subgraphs. We then discuss the algorithmic consequences of these results,
in particular for the Colouring and Graph Isomorphism problems. We also explain
a possible strong connection between results on boundedness of clique-width and on
well-quasi-orderability by the induced subgraph relation for hereditary graph classes.

1 Introduction

Many decision problems are known to be NP-complete [84], and it is generally believed
that such problems cannot be solved in time polynomial in the input size. For many of these
hard problems, placing restrictions on the input (that is, insisting that the input has certain
stated properties) can lead to significant changes in the computational complexity of the
problem. This leads one to ask fundamental questions: under which input restrictions can
an NP-complete problem be solved in polynomial time, and under which input restrictions
does the problem remain NP-complete? For problems defined on graphs, we can restrict
the input to some special class of graphs that have some commonality. The ultimate goal
is to obtain complexity dichotomies for large families of graph problems, which tell us
exactly for which graph classes a certain problem is efficiently solvable and for which it
stays computationally hard. Such dichotomies may not always exist if P�= NP [129], but
rather than solving problems one by one, and graph class by graph class, we want to discover
general properties of graph classes from which we can determine the tractability or hardness
of families of problems.

1.1 Width Parameters

One way to define a graph class is to use a notion of “width” and consider the set of
graphs for which the width is bounded by a constant. Though it will not be our focus, let
us briefly illustrate this idea with the most well-known width parameter, treewidth. A tree
decomposition of a graph G = (V,E) is a tree T whose nodes are subsets of V and has the
properties that, for each v in V , the tree nodes that contain v induce a non-empty connected
subgraph, and, for each edge vw in E, there is at least one tree node that contains v and w.
See Figure 1 for an illustration of a graph and one of its tree decompositions. The sets of
vertices that form the nodes of the tree are called bags and the width of the decomposition
is one less than the size of the largest bag. The treewidth of G is the minimum width of its
tree decompositions. One can therefore define a class of graphs of bounded treewidth; that
is, for some constant c, the collection of graphs that each have treewidth at most c. The
example in Figure 1 has treewidth 2. Moreover, it is easy to see that trees form exactly the
class of graphs with treewidth 1. Hence, the treewidth of a graph can be seen as a measure
that indicates how close a graph is to being a tree. Many graph problems can be solved in
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Figure 1: A graph, and a tree decomposition of the graph.

polynomial time on trees. For such problems it is natural to investigate whether restricting
the problem to inputs that have bounded treewidth still yields algorithmic tractability. An
approach that often yields polynomial-time algorithms is to apply dynamic programming
over the decomposition tree. A disadvantage of this approach is that only sufficiently sparse
graphs have bounded treewidth.

We further discuss reasons for focussing on width parameters in Section 1.2, but let
us first note that there are many alternative width parameters, each of which has led to
progress in understanding the complexity of problems on graphs.

Clique-width, the central width parameter in our survey, is another well-known exam-
ple, which has received significant attention since it was introduced by Courcelle, Engelfriet
and Rozenberg [56] at the start of the 1990s. Clique-width can be seen as a generalisation of
treewidth that can deal with dense graphs, such as complete graphs and complete bipartite
graphs, provided these instances are sufficiently regular. We will give explain this in Sec-
tion 3, where we also give a formal definition, but, in outline, the idea is, given a graph G, to
determine how it can be built up vertex-by-vertex using four specific graph operations that
involve assigning labels to the vertices. The operations ensure that vertices labelled alike
will keep the same label and thus, in some sense, behave identically. The clique-width of G
is the minimum number of different labels needed to construct G in this way. Hence, if the
clique-width of a graph G is small, we can decompose G into large sets of similarly behaving
vertices, and these decompositions can be exploited to find polynomial-time algorithms (as
we shall see later in this paper).

We remark that many other width parameters have been defined including boolean-
width, branch-width, MIM-width, MM-width, module-width, NLC-width, path-width and
rank-width, to name just a few. These parameters differ in strength, as we explain below;
we refer to [95, 111,116,164] for surveys on width parameters.

Given two width parameters p and q, we say that p dominates q if there is a func-
tion f such that p(G) ≤ f(q(G)) for all graphs G. If p dominates q but not the reverse,
then p is more general than q, as p is bounded for larger graph classes: whenever q is
bounded for some graph class, then this is also the case for p, but there exists an infi-
nite family of graphs for which the reverse does not hold. If p dominates q and q dom-
inates p, then p and q are equivalent . For instance, MIM-width is more general than
boolean-width, clique-width, module-width, NLC-width and rank-width, all of which are
equivalent [42, 114, 151, 154, 164]. The latter parameters are more general than the equiv-
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alent group of parameters branch-width, MM-width and treewidth, which are, in turn,
more general than path-width [59, 155, 164]. To give a concrete example, recall that the
treewidth of the class of complete graphs is unbounded, in contrast to the clique-width.
More precisely, a complete graph on n ≥ 2 vertices has treewidth n− 1 but clique-width 2.
As another example, the reason that rank-width and clique-width are equivalent is because
the inequalities rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1 hold for every graph G [151]. These two
inequalities are essentially tight [150], and, as such, the latter example also shows that two
equivalent parameters may not necessarily be linearly, or even polynomially, related.

1.2 Motivation for Width Parameters

The main computational reason for the large interest in width parameters is that many
well-known NP-complete graph problems become polynomial-time solvable if some width
parameter is bounded. There are a number of meta-theorems which prescribe general,
sufficient conditions for a problem to be tractable on a graph class of bounded width. For
treewidth and equivalent parameters, such as branch-width and MM-width, one can use
the celebrated theorem of Courcelle [51]. This theorem, slightly extended from its original
form, states that for every graph class of bounded treewidth, every problem definable in
MSO2 can be solved in time linear in the number of vertices of the graph.1 In order to use
this theorem, one can use the linear-time algorithm of Bodlaender [17] to verify whether a
graph has treewidth at most c for any fixed constant c (that is, c is not part of the input).
However, many natural graph classes, such as all those that contain graphs with arbitrarily
large cliques, have unbounded treewidth.

We have noted that clique-width is more general than treewidth. This means that
if we have shown that a problem can be solved in polynomial time on graphs of bounded
clique-width, then it can also be solved in polynomial time on graphs of bounded treewidth.
Similarly, if a problem is NP-complete for graphs of bounded treewidth, then the same holds
for graphs of bounded clique-width. For graph classes of bounded clique-width, one can
use several other meta-theorems. The first such result is due to Courcelle, Makowsky and
Rotics [58]. They proved that graph problems that can be defined in MSO1 are linear-time
solvable on graph classes of bounded clique-width.2 An example of such a problem is the
well-known Dominating Set problem. This problem is to decide, for a graph G = (V,E)
and integer k, if G contains a set S ⊆ V of size at most k such that every vertex of G− S

has at least one neighbour in S.3

1.3 Focus: Clique-Width

As mentioned, in this survey we focus on clique-width. Despite the usefulness of bound-
edness of clique-width, our understanding of clique-width itself is still very limited. For

1MSO2 refers to the fragment of second order logic where quantified relation symbols must have arity
at most 2, which means that, with graphs, one can quantify over both sets of vertices and sets of edges.
Many graph problems can be defined using MSO2, such as deciding whether a graph has a k-colouring (for
fixed k) or a Hamiltonian path, but there are also problems that cannot be defined in this way.

2MSO1 is monadic second order logic with the use of quantifiers permitted on relations of arity 1 (such
as vertices), but not of arity 2 (such as edges) or more. Hence, MSO1 is more restricted than MSO2. We
refer to [55] for more information on MSO1 and MSO2.

3Several other problems, such as List Colouring and Precolouring Extension are polynomial-time
solvable on graphs of bounded treewidth [113], but stay NP-complete on graph of bounded clique-width; the
latter follows from results of [113] and [20], respectively; see also [88].
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example, although computing the clique-width of a graph is known to be NP-hard in gen-
eral [77],4 the complexity of computing the clique-width is open even on very restricted
graph classes, such as unit interval graphs (see [107] for some partial results). To give
another example, the complexity of determining whether a given graph has clique-width
at most c is still open for every fixed constant c ≥ 4. On the positive side, see [49] for a
polynomial-time algorithm for c = 3 and [75] for a polynomial-time algorithm, for every
fixed c, on graphs of bounded treewidth.

To get a better handle on clique-width, many properties of clique-width, and relation-
ships between clique-width and other graph parameters, have been determined over the
years. In particular, numerous graph classes of bounded and unbounded clique-width have
been identified. This has led to several dichotomies for various families of graph classes,
which state exactly which graph classes of the family have bounded or unbounded clique-
width. However, determining (un)boundedness of clique-width of a graph class is usually a
highly non-trivial task, as it requires a thorough understanding of the structure of graphs
in the class. As such, there are still many gaps in our knowledge.

A number of results on clique-width are collected in the surveys on clique-width by
Gurski [95] and Kamiński, Lozin and Milanič [116]. Gurski focuses on the behaviour of
clique-width (and NLC-width) under graph operations and transformations. Kamiński,
Lozin and Milanič also discuss results for special graph classes. We refer to a recent survey
of Oum [150] for algorithmic and structural results on the equivalent width parameter
rank-width.

1.4 Aims and Outline

In Section 2 we introduce some basic terminology and notation that we use throughout
the paper. In Section 3 we formally define clique-width. In the same section we present
a number of basic results on clique-width and explain two general techniques for showing
that the clique-width of a graph class is bounded or unbounded. For this purpose, in the
same section we also list a number of graph operations that preserve (un)boundedness of
clique-width for hereditary graph classes.

A graph class is hereditary if it is closed under taking induced subgraphs, or equivalently,
under vertex deletion. Due to its natural definition, the framework of hereditary graph
classes captures many well-known graph classes, such as bipartite, chordal, planar, interval
and perfect graphs; we refer to the textbook of Brandstädt, Le and Spinrad [34] for a
survey. As we shall see, boundedness of clique-width has been particularly well studied
for hereditary graph classes. We discuss the state-of-the-art and other known results on
boundedness of clique-width for hereditary graph classes in Section 4. This is all related
to our first aim: to update the paper of Kamiński, Lozin and Milanič [116] from 2009
by surveying, in a systematic way, known results and open problems on boundedness of
clique-width for hereditary graph classes.

Our second aim is to discuss algorithmic implications of the results from Section 4. We
do this in Section 5 by focussing on two well-known problems. We first discuss implications
for the Colouring problem, which is well known to be NP-complete [133]. We focus on
(hereditary) graph classes defined by two forbidden induced subgraphs. Afterwards, we
consider the algorithmic consequences for the Graph Isomorphism problem. This prob-
lem can be solved in quasi-polynomial time [7]. It is not known if Graph Isomorphism

4It is also NP-hard to compute treewidth [4] and parameters equivalent to clique-width, such as NLC-
width [98], rank-width (see [110,149]) and boolean-width [159].
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can be solved in polynomial time, but it is not NP-complete unless the polynomial hier-
archy collapses [160]. As such, we define the complexity class GI, which consists of all
problems that can be polynomially reduced to Graph Isomorphism and a problem in GI

is GI-complete if Graph Isomorphism can be polynomially reduced to it. The Graph

Isomorphism problem is of particular interest, as there are similarities between proving
unboundedness of clique-width of some graph class and proving that Graph Isomorphism

stays GI-complete on this class [161].

Our third aim is to discuss a conjectured relationship between boundedness of clique-
width and well-quasi-orderability by the induced subgraph relation. If it can be shown
that a graph class is well-quasi-ordered, we can apply several powerful results to prove
further properties of the class. This is, for instance, illustrated by the Robertson-Seymour
Theorem [157], which states that the set of all finite graphs is well-quasi-ordered by the
minor relation. This result makes it possible to test in cubic time whether a graph belongs
to some given minor-closed graph class [156] (see [112] for a quadratic algorithm). For the
induced subgraph relation, it is easy to construct examples of hereditary graph classes that
are not well-quasi-ordered. Take, for instance, the class of graphs of degree at most 2, which
contains an infinite anti-chain, namely the set of all cycles.

If every hereditary graph class that is well-quasi-ordered by the induced subgraph rela-
tion also has bounded clique-width, then all algorithmic consequences of having bounded
clique-width would also hold for being well-quasi-ordered by the induced subgraph relation.
However, Lozin, Razgon and Zamaraev [142] gave a negative answer to a question of Dali-
gault, Rao and Thomassé [69] about this implication, by presenting a hereditary graph class
of unbounded clique-width that is nevertheless well-quasi-ordered by the induced subgraph
relation. Their graph class can be characterized only by infinitely many forbidden induced
subgraphs. This led the authors of [142] to conjecture that every finitely defined heredi-
tary graph class that is well-quasi-ordered by the induced subgraph relation has bounded
clique-width, which, if true, would still be very useful. All known results agree with this
conjecture, and we survey these results in Section 6. In the same section we explain that the
graph operations given in Section 3 do not preserve well-quasi-orderability by the induced
subgraph relation. However, we also explain that a number of these operations can be used
for a stronger property, namely well-quasi-orderability by the labelled induced subgraph
relation.

In Section 7 we conclude our survey with a list of other relevant open problems. There,
we also discuss some variants of clique-width, including linear clique-width and power-
bounded clique-width.

2 Preliminaries

Throughout the paper we consider only finite, undirected graphs without multiple edges
or self-loops.

Let G = (V,E) be a graph. The degree of a vertex u ∈ V is the size of its neighbourhood
N(u) = {v ∈ V | uv ∈ E}. For a subset S ⊆ V , the graph G[S] denotes the subgraph
of G induced by S, which is the graph with vertex set S and an edge between two vertices
u, v ∈ S if and only if uv ∈ E. If F is an induced subgraph of G, then we denote this by
F ⊆i G. Note that G[S] can be obtained from G by deleting the vertices of V \S. The line
graph of G is the graph with vertex set E and an edge between two vertices e1 and e2 if
and only if e1 and e2 share a common end-vertex in G.

An isomorphism from a graph G to a graph H is a bijective mapping f : V (G) → V (H)
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1,t (t = 5 shown) K++
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Figure 2: The graphs K+
1,t and K++

1,t .

such that there is an edge between two vertices u and v in G if and only if there is an edge
between f(u) and f(v) in H. If such an isomorphism exists then G and H are said to be
isomorphic. We say that G is H-free if G contains no induced subgraph isomorphic to H.

Let G = (V,E) be a graph. A set K ⊆ V is a clique of G and G[K] is complete if there
is an edge between every pair of vertices in K. If G is connected, then a vertex v ∈ V

is a cut-vertex of G if G[V \ {v}] is disconnected, and a clique K ⊂ V is a clique cut-set
of G if G[V \ K] is disconnected. If G is connected and has at least three vertices but
no cut-vertices, then G is 2-connected . A maximal induced subgraph of G that has no
cut-vertices is a block of G. If G is connected and has no clique cut-set, then G is an atom.

The graphs Cn, Pn and Kn denote the cycle, path and complete graph on n vertices,
respectively. The length of a path or a cycle is the number of its edges. The distance
between two vertices u and v in a graph G is the length of a shortest path between them.
For an integer r ≥ 1, the r-th power of G is the graph with vertex set V (G) and an edge
between two vertices u and v if and only if u and v are at distance at most r from each
other in G.

If F and G are graphs with disjoint vertex sets, then the disjoint union of F and G is
the graph G+F = (V (F )∪V (G), E(F )∪E(G)). The disjoint union of s copies of a graph G

is denoted sG. A forest is a graph with no cycles, that is, every connected component is a
tree. A forest is linear if it has no vertices of degree at least 3, or equivalently, if it is the
disjoint union of paths. A leaf in a tree is a vertex of degree 1. In a complete binary tree
all non-leaf vertices have degree 3.

Let S and T be disjoint vertex subsets of a graph G = (V,E). A vertex v is (anti-
)complete to T if it is (non-)adjacent to every vertex in T . Similarly, S is (anti-)complete
to T if every vertex in S is (non-)adjacent to every vertex in T . A set of vertices M is
a module of G if every vertex of G that is not in M is either complete or anti-complete
to M . A module of G is trivial if it contains zero, one or all vertices of G, otherwise it is
non-trivial . We say that G is prime if every module of G is trivial.

A graph G is bipartite if its vertex set can be partitioned into two (possibly empty)
subsets X and Y such that every edge of G has one end-vertex in X and the other one in Y .
If X is complete to Y , then G is complete bipartite. For two non-negative integers s and t,
we denote the complete bipartite graph with partition classes of size s and t, respectively,
by Ks,t. The graph K1,t is also known as the (t + 1)-vertex star . The subdivision of an
edge uv in a graph replaces uv by a new vertex w and edges uw and vw. We let K+

1,t

and K++
1,t be the graphs obtained from K1,t by subdividing one of its edges once or twice,

respectively.

A graph is complete r-partite, for some r ≥ 1, if its vertex set can be partitioned into r

independent sets V1, . . . , Vr such that there exists an edge between two vertices u and v
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diamond = 2P1 + P2 gem = P1 + P4 house = P5 domino

Sh,i,j Cn Kn Pn

((h, i, j) = (1, 2, 3) shown) (n = 5 shown) (n = 5 shown) (n = 5 shown)

Figure 3: Some common graphs used throughout the paper.

if and only if u and v do not belong to the same set Vi. Note that a non-empty graph is
complete r-partite for some r ≥ 1 if and only if it is (P1 + P2)-free.

Let G = (V,E) be a graph. Its complement G is the graph with vertex set V and an
edge between two vertices u and v if and only if uv is not an edge of G. We say that G

is self-complementary if G is isomorphic to G. The complement of a bipartite graph is a
co-bipartite graph.

The graphs K1,3, 2P1 + P2, P1 + P4, and P5 are also known as the claw , diamond ,
gem, and house, respectively. The latter three graphs are shown in Figure 3, along with
the domino. The graph Sh,i,j , for 1 ≤ h ≤ i ≤ j, denotes the subdivided claw , which is
the tree with one vertex x of degree 3 and exactly three leaves, which are of distance h, i
and j from x, respectively. Note that S1,1,1 = K1,3, S1,1,2 = K+

1,3 and S1,1,3 = K++
1,3 . See

Figure 3 for an example. We let S be the class of graphs every connected component of
which is either a subdivided claw or a path on at least one vertex. The graph Th,i,j with
0 ≤ h ≤ i ≤ j denotes the triangle with pendant paths of length h, i and j, respectively.
That is, Th,i,j is the graph with vertices a0, . . . , ah, b0, . . . , bi and c0, . . . , cj and edges a0b0,
b0c0, c0a0, apap+1 for p ∈ {0, . . . , h − 1}, bpbp+1 for p ∈ {0, . . . , i − 1} and cpcp+1 for
p ∈ {0, . . . , j − 1}. Note that T0,0,0 = C3 = K3. The graphs T0,0,1 = P1 + P3, T0,1,1, T1,1,1

and T0,0,2 are also known as the paw , bull , net and hammer , respectively; see also Figure 4.
Also note that Th,i,j is the line graph of Sh+1,i+1,j+1. We let T be the class of graphs that
are the line graphs of graphs in S. Note that T contains every graph Th,i,j and every path
(as the line graph of Pt is Pt−1 for t ≥ 2).

Let G = (V,E) be a graph. For an induced subgraph F ⊆i G, the subgraph comple-
mentation operation, which acts on G with respect to F , replaces every edge in F by a
non-edge, and vice versa. If we apply this operation on G with respect to G itself, then we
obtain the complement G of G. For two disjoint vertex subsets S and T in G, the bipartite
complementation operation, which acts on G with respect to S and T , replaces every edge
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T0,0,1 = paw T0,1,1 = bull T1,1,1 = net T0,0,2 = hammer

Figure 4: Examples of graphs Th,i,j .

with one end-vertex in S and the other one in T by a non-edge and vice versa. We note
that applying a bipartite complementation is equivalent to applying a sequence of three
consecutive subgraph complementations, namely on G[S ∪ T ], G[S] and G[T ].

Let G be a graph class. Denote the number of labelled graphs on n vertices in G by gn.
Then G is superfactorial if there does not exist a constant c such that gn ≤ ncn for every n.

Recall that a graph class is hereditary if it is closed under taking induced subgraphs. It
is not difficult to see that a graph class G is hereditary if and only if G can be characterized
by a unique set FG of minimal forbidden induced subgraphs. A hereditary graph class G
is finitely defined if FG is finite. We note, however, that the set FG may have infinite size.
For example, if G is the class of bipartite graphs, then FG = {C3, C5, C7, . . .}. If F is a
set of graphs, we say that a graph G is F-free if G does not contain any graph in F as an
induced subgraph. In particular, this means that if a graph class G is hereditary, then G
is exactly the class of FG-free graphs. If F = {H1, H2, . . .} or {H1, H2, . . . , Hp} for some
p ≥ 0, we may also describe a graph G as being (H1, H2, . . .)-free or (H1, H2, . . . , Hp)-free,
respectively, rather than F-free; recall that if F = {H1} we may write H1-free instead.

Observation 2.1. Let H and H∗ be sets of graphs. The class of H-free graphs is contained
in the class of H∗-free graphs if and only if for every graph H∗ ∈ H∗, the set H contains
an induced subgraph of H∗.

Suppose H and H∗ are sets of graphs such that for every graph H∗ ∈ H∗, the set H
contains an induced subgraph of H∗. Observation 2.1 implies that any graph problem that
is polynomial-time solvable for H∗-free graphs is also polynomial-time solvable for H-free
graphs, and any graph problem that is NP-complete for H-free graphs is also NP-complete
for H∗-free graphs.

We define the complement of a hereditary graph class G as G = {G | G ∈ G}. Then G
is closed under complementation if G = G. As FG is the unique minimal set of forbidden
induced subgraphs for G, we can make the following observation.

Observation 2.2. A hereditary graph class G is closed under complementation if and only
if FG is closed under complementation.

Let G be a graph. The contraction of an edge uv replaces u and v and their incident
edges by a new vertex w and edges wy if and only if either uy or vy was an edge inG (without
creating multiple edges or self-loops). Let u be a vertex with exactly two neighbours v, w,
which in addition are non-adjacent. The vertex dissolution of u removes u, uv and uw, and
adds the edge vw. Note that vertex dissolution is a special type of edge contraction, and it
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is the reverse operation of an edge subdivision (recall that the latter operation replaces an
edge uv by a new vertex w with edges uw and vw).

Let G and H be graphs. The graph H is a subgraph of G if G can be modified into H

by a sequence of vertex deletions and edge deletions. We can define other containment
relations using the graph operations defined above. We say that G contains H as a minor
if G can be modified into H by a sequence of edge contractions, edge deletions and ver-
tex deletions, as a topological minor if G can be modified into H by a sequence of vertex
dissolutions, edge deletions and vertex deletions, as an induced minor if G can be mod-
ified into H by a sequence of edge contractions and vertex deletions, and as an induced
topological minor if G can be modified into H by a sequence of vertex dissolutions and
vertex deletions. Let {H1, . . . , Hp} be a set of graphs. If G does not contain any of the
graphsH1, . . . , Hp as a subgraph, then G is (H1, . . . , Hp)-subgraph-free. We define the terms
(H1, . . . , Hp)-minor-free, (H1, . . . , Hp)-topological-minor-free, (H1, . . . , Hp)-induced-minor-
free, and (H1, . . . , Hp)-induced-topological-minor-free analogously. Note that graph classes
defined by some set of forbidden subgraphs, minors, topological minors, induced minors, or
induced topological minors are hereditary, as they are all closed under vertex deletion.

Example 2.3. A graph is planar if it can be embedded in the plane in such a way that
any two edges only intersect with each other at their end-vertices. It is well known that
the class of planar graphs can be characterized by a set of forbidden minors: Wagner’s
Theorem [165] states that a graph is planar if and only if it is (K3,3,K5)-minor-free.

We will also need the following folklore observation (see, for example, [90]).

Observation 2.4. For every F ∈ S, a graph is F -subgraph-free if and only if it is F -
minor-free.

A k-colouring of a graph G is a mapping c : V → {1, . . . , k} such that c(u) �= c(v)
whenever u and v are adjacent vertices. The chromatic number of G is the smallest k such
that G has a k-colouring. The clique number of G is the size of a largest clique of G.

A graph G is perfect if, for every H ⊆i G, the chromatic number of H is equal to the
clique number of H. The Strong Perfect Graph Theorem [45] states that G is perfect if
and only if G is (C5, C7, C9, . . .)-free and (C7, C9, . . .)-free. A graph G is chordal if it is
(C4, C5, C6, . . .)-free and weakly chordal if it is (C5, C6, C7, . . .)-free and (C6, C7, . . .)-free. A
graph G is a split graph if it has a split partition, that is, a partition of its vertex set into two
(possibly empty) sets K and I, where K is a clique and I is an independent set. It is known
that a graph is split if and only if it is (C4, C5, 2P2)-free [78]. A graph G is a permutation
graph if line segments connecting two parallel lines can be associated to its vertices in such
a way that two vertices of G are adjacent if and only if the two corresponding line segments
intersect. A graph G is a permutation split graph if it is both permutation and split, and G

is a permutation bipartite graph if it is both permutation and bipartite. A graph G is
chordal bipartite if it is (C3, C5, C6, C7, . . .)-free. A graph G is distance-hereditary if the
distance between any two vertices u and v in any connected induced subgraph of G is the
same as the distance of u and v in G. Equivalently, a graph is distance-hereditary if and
only if it is (domino, gem, house, C5, C6, C7, . . .)-free [9]. A graph is (unit) interval if it has
a representation in which each vertex u corresponds to an interval Iu (of unit length) of the
line such that two vertices u and v are adjacent if and only if Iu ∩ Iv �= ∅.

We make the following observation. A number of inclusions in Observation 2.5 follow
immediately from the definitions and the Strong Perfect Graph Theorem. For the remaining
inclusions we refer to [34].
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Figure 5: The inclusion relations between well-known classes mentioned in the paper. An
arrow from one class to another indicates that the first class contains the second.

Observation 2.5. The following statements hold:

1. every split graph is chordal,
2. every (unit) interval graph is chordal,
3. every chordal graph is weakly chordal,
4. every (bipartite or split) permutation graph is weakly chordal,
5. every distance-hereditary graph is weakly chordal,
6. every weakly chordal graph is perfect,
7. every bipartite permutation graph is chordal bipartite, and
8. every (chordal) bipartite graph is perfect.

The containments listed in Observation 2.5 (and those that follow from them by tran-
sitivity) are also displayed Figure 5. It is not difficult to construct counterexamples for the
other containments. Indeed, for pairs of classes above for which we have listed the minimal
forbidden induced subgraph characterizations, these characterizations immediately provide
such counterexamples.

We now introduce the notion of treewidth formally. Recall from Section 1 that treewidth
expresses to what extent a graph is “tree-like”. A tree decomposition of a graph G is a pair
(T,X ) where T is a tree and X = {Xi | i ∈ V (T )} is a collection of subsets of V (G), such
that the following three conditions hold:

(i)
⋃

i∈V (T )Xi = V (G)

(ii) for every edge xy ∈ E(G), there is an i ∈ V (T ) such that x, y ∈ Xi and

(iii) for every x ∈ V (G), the set {i ∈ V (T ) | x ∈ Xi} induces a connected subtree of T .

The width of the tree decomposition (T,X ) is max{|Xi| − 1 | i ∈ V (T )}, and the
treewidth tw(G) of G is the minimum width over all tree decompositions of G. If T is
a path, then (X,T ) is a path decomposition of G. The path-width pw(G) of G is the
minimum width over all path decompositions of G.

www.cambridge.org/9781108740722
www.cambridge.org

