
Cambridge University Press
978-1-108-73732-6 — International AS & A Level Computer Science Revision Guide
Tony Piper
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Information representation

1

C
h
ap

te
r 1

1.01 Number systems

Humans use the base 10 number system.

Computers use digital data in the form of electrical

signals. Digital data is represented as bits.

Data values, such as numbers and characters, need

more than a single bit. Most PCs store data as 8-bit

patterns called bytes.

Learning Objectives:

 Understand the binary, decimal and

hexadecimal number systems and Binary

Coded Decimal (BCD)

 Understand the one’s complement and two’s

complement representation used for positive

and negative integers

 Perform binary addition and subtraction

of integers

 Use the terms for the naming of large binary

and large decimal numbers

 Understand how characters are

represented using:

 • The ASCII system, including the

extended character set

 • Unicode

 Bitmaps

 • Understand how data in a bitmap is

encoded and the different bitmap file

formats

 • Calculate a bitmap image file size

 • Understand the limitations of a

bitmap image

 Vector graphics

 • Understand how a drawing is constructed

by selecting shapes or objects from libraries

 Describe applications where bitmaps or vector

graphics would be used

 Sound

 • Understand how sound data is encoded

 • Understand the effect of sampling rate and

sampling resolution

 Understand the need for compression

techniques for all of the above media and text

files, and the terms run-length encoding (RLE),

‘lossy’ and ‘lossless’

Any number system is founded on a base, for example,

denary is base 10. The largest number used in any

position will be one less than the number base. Each

position has a place value and this depends on the

number base.

www.cambridge.org/9781108737326
www.cambridge.org

Cambridge University Press
978-1-108-73732-6 — International AS & A Level Computer Science Revision Guide
Tony Piper
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2

C
h
ap

te
r 1

 In
fo

rm
atio

n
 re

p
re

se
n
tatio

n

Binary number system

Binary is the ‘base 2’ number system.

This is summarised in the following table:

Table 1.01 Binary – base 2.

To convert the binary number 1100 to a denary number, you write it as:

(1 × 8) + (1 × 4) + (0 × 2) + (0 × 1) = 12.

You can add a suffix to the binary number to make it clear that it is binary, i.e. 1100
2
.

Hexadecimal number system

Hexadecimal is the ‘base 16’ number system.

System Base Possible digits Place values

Hexadecimal 16 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

 A, B, C, D, E, F

etc. 163 162 161 Units

2 A C

System Base Possible digits Place values

Binary 2 0, 1 etc. 23 22 21 Unit

1 1 0 0

Table 1.02 Hexadecimal – base 16.

The digits allowed in base 16 extend past 9, so you replace 10, 11, 12, 13, 14 and 15 with a letter. For hexadecimal

you use the characters A to F as shown in Table 1.2.

To convert the hexadecimal number 2AC
16,

 to a denary number, you write it as:

(2 × 256) + (A × 16) + (C × 1) = (2 × 256) + (10 × 16) + (12 × 1) = 512 + 160 + 12 = 684.

Hexadecimal is a shorthand representation for a binary code. Applications where hexadecimal is used include:

• assembly language programming to represent instructions in the program code

• graphics packages to represent colour codes

• program code to represent characters.

Conversion between different bases

Worked example 1.1
Convert 69

10
 into binary.

Table 1.3 shows you how to divide the number repeatedly

by 2 and record the remainders. You find the answer,

1000101
2
 by collecting these remainders, starting at the

bottom. Try to remember this, as it is not obvious.

÷2 remainder

69 34 1

34 17 0

17 8 1

8 4 0

4 2 0

2 1 0

1 0 1

= 1000101
2

Table 1.3 – Convert denary to binary.

www.cambridge.org/9781108737326
www.cambridge.org

Cambridge University Press
978-1-108-73732-6 — International AS & A Level Computer Science Revision Guide
Tony Piper
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

3

C
h
ap

te
r 1

 In
fo

rm
atio

n
 re

p
re

se
n
tatio

n

Worked example 1.2
Convert 1000 1100

2
into denary.

You need to use the place values (20, 21, 22 etc).

1 0 0 0 1 1 0 0

= 1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20

= 128 + 0 + 0 + 0 + 8 + 4 + 0 + 0

= 140

Progress check A
Convert these numbers to denary:

a 0100 0001

b 1010 1010

c 1111 1111

Progress check B
Write the 8-bit binary for the integers 3

10
, 31

10

and 96
10

.

You might need to add 1, 2 or 3 zeros to the left side

of the binary number so that each nibble is complete.

Hence, you will write 10101 as 0001 0101.

Conversion between binary and hexadecimal

One approach would be to convert the binary number

into denary first; but there is a more direct way:

Worked example 1.3
Convert 0111110101011111

2
 into hexadecimal.

Divide the binary number into nibbles:

0111 1101 0101 1111

Write the denary for each nibble:

 7 13 5 15

Convert to hexadecimal: 7 D 5 F

Written as 7D5F
16
 or 7D5F hex

(Programmers who are used to working in hexadecimal or binary will often skip the denary step).

The method can be used in reverse to convert from hexadecimal to binary.

www.cambridge.org/9781108737326
www.cambridge.org

Cambridge University Press
978-1-108-73732-6 — International AS & A Level Computer Science Revision Guide
Tony Piper
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4

C
h
ap

te
r 1

 In
fo

rm
atio

n
 re

p
re

se
n
tatio

n

Worked example 1.4
Convert 1C9 Hex to a binary number that is to be stored as two bytes.

 1 C 9

Hexadecimal 1 12 9

Binary 00 01 1100 1001 = 1 1100 1001
2

‘Stored as two bytes’ means this will be stored as a 16-bit binary pattern.

0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1

The convention is to label the bit on the right-hand side as position 0.

Using 16 bits, bit position 0 is the least significant bit, and bit position 15 is the most significant bit .

Conversion between hexadecimal and denary

Worked example 1.5
Convert from hexadecimal to denary.

For hexadecimal > convert to binary > convert

to decimal.

78 hex > 0111 1000
2
> 120

10

The opposite of the above example is to convert

from denary to hexadecimal.

Worked example 1.7
Convert 93

10
 to hexadecimal – this time we shall not convert the denary number to binary first.

93 = 5 × 16 + 13

13 must be written as D, so the hexadecimal is:

5D hex

Progress check C
Convert these hexadecimal numbers to denary:

a 89 hex b 206 hex

Convert these hexadecimal numbers to 12-bit

binary representations:

c 3F hex d 1EA hex

e CAB hex

Worked example 1.6
To convert 93

10
 to hexadecimal:

It is easiest to convert the denary number to

binary first – then to hex.

93
10

 > 0101 1101
2
 > 5D hex

Magnitude of numbers

The size of a file on the computer could be several

thousand or several billion bytes. Hence, you need a

notation to state the number concisely.

If you are counting in denary, then 1000 bytes is

referred to as 1 kilobyte and 1,000,000 bytes is referred

to as 1 megabyte.

However, the computer is more used to working with

base 2.

www.cambridge.org/9781108737326
www.cambridge.org

Cambridge University Press
978-1-108-73732-6 — International AS & A Level Computer Science Revision Guide
Tony Piper
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

5

C
h
ap

te
r 1

 In
fo

rm
atio

n
 re

p
re

se
n
tatio

n

In this case, 1 kibibyte is 1024 bytes (1024 is 210) and 1 mebibyte is 1,048,576 bytes (1024 × 1024 or 220).

Other multiples are in common use as the size of computer storage devices and memory continues to increase. The

table below summarises the terms used.

Denary Binary

kilobyte 1000 (103) bytes kibibyte 1,024 (210) bytes

megabyte 1,000,000 (106) bytes mebibyte 1,048,578 (220) bytes

gigabyte 1,000,000,000 (109) bytes gibibyte 1,073,741,824 (230) bytes

terabyte 1,000,000,000,000 (1012) bytes tebibyte 1,099,511,627,776 (240) bytes

You can remember these easily because they are increasing by a multiple of 1000 in the case of denary or 1024 in

the case of binary, each time.

Denary Binary

kilobyte 1000 bytes kibibyte 1024 bytes

megabyte 10002 bytes mebibyte 10242 bytes

gigabyte 10003 bytes gibibyte 10243 bytes

terabyte 10004 bytes tebibyte 10244 bytes

Progress check D
File A has a fi le size of 2 kibibytes. File B has a fi le

size of 2.1 kilobytes.

Which fi le has the larger fi le size?

Two’s complement representation

Programs will need to use both positive and negative

integers.

We are going to use a representation called two’s

complement.

Two’s complement has a negative place value for the

most signifi cant bit.

For two’s complement representation using a single

byte (eight bits), the place values are as shown.

–128 64 32 16 8 4 2 1

Worked example 1.8
Convert the following denary numbers to 8-bit two’s complement binary numbers.

a 56 = 32 + 16 + 8

–128 64 32 16 8 4 2 1

0 0 1 1 1 0 0 0

b –125 = –128 + 3 = –128 + 2 + 1

–128 64 32 16 8 4 2 1

1 0 0 0 0 0 1 1

c –17 = –128 + 111 = –128 + 64 + 32 + 8 + 4 + 2 + 1

–128 64 32 16 8 4 2 1

1 1 1 0 1 1 1 1

TIP

Note the method

for the negative

numbers. You need

to start with 1x-128

and then work

out what positive

number to add to it

as shown in b and c

opposite.

www.cambridge.org/9781108737326
www.cambridge.org

Cambridge University Press
978-1-108-73732-6 — International AS & A Level Computer Science Revision Guide
Tony Piper
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6

C
h
ap

te
r 1

 In
fo

rm
atio

n
 re

p
re

se
n
tatio

n

1.02 Addition and subtraction of binary integers

The numbers will use two’s complement.

All the examples below show each number stored with eight bits.

Addition

Worked example 1.9
Adding two positive integers (+31) + (+69)

+31 0 0 0 1 1 1 1 1

+69 0 1 0 0 0 1 0 1 +

1 1 1 1 1 This row shows the ‘carry bit’ from

each addition

Answer 0 1 1 0 0 1 0 0 This is +100 denary

Worked example 1.10
Adding a positive and a negative integer (+56) + (–12)

+56 0 0 1 1 1 0 0 0

–12 1 1 1 1 0 1 0 0 +

1 1 1 1 This row shows the ‘carry bit’ from each bit addition

Answer 0 0 1 0 1 1 0 0 This is +44 denary

Worked example 1.11
Adding two positive integers (+114) + (+38)

+114 0 1 1 1 0 0 1 0

+38 0 0 1 0 0 1 1 0 +

1 1 1 1 This row shows the ‘carry bit’ from each bit addition

Answer 1 0 0 1 1 0 0 0 This is –104 denary

TIP

Using one’s

complement will

show an alternative

method to use for

negative integers.

www.cambridge.org/9781108737326
www.cambridge.org

Cambridge University Press
978-1-108-73732-6 — International AS & A Level Computer Science Revision Guide
Tony Piper
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

7

C
h
ap

te
r 1

 In
fo

rm
atio

n
 re

p
re

se
n
tatio

n

The pattern is not the answer that we expected, of +152.

The problem is that the correct answer is outside the

range of numbers that it is possible to represent using

8-bit two’s complement.

The range possible is: smallest number –128 and largest

number +127.

One’s complement and two’s complement

Worked example 1.12
Express –27 denary in one’s complement and two’s complement.

+27
10

 = 0001 1011
2

The one’s complement is 1110 0100

Now add 1 to this 1110 0101 +

Gives the two’s complement 1110 0101 = –27

So starting with the positive number (+27), the one’s complement can be used to work out the two’s

complement for –27.

Subtraction

You can do a subtraction by either doing a binary subtraction or turning the calculation into an addition.

Worked example 1.13
Binary subtraction of 56 and 19.

Calculate +56 – 19

+56 0 0 1 1 1 0 0 0

+19 0 0 0 1 0 0 1 1 –

1 1 1 This row shows the ‘carry bit’ from each bit subtraction

Answer 0 0 1 0 0 1 0 1 This is + 37 denary

Similarly, if you calculate (–106) + (–23), it would not

show a correct answer of –129.

In both of these examples, overflow above has

occurred in the most significant bit position.

www.cambridge.org/9781108737326
www.cambridge.org

Cambridge University Press
978-1-108-73732-6 — International AS & A Level Computer Science Revision Guide
Tony Piper
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8

C
h
ap

te
r 1

 In
fo

rm
atio

n
 re

p
re

se
n
tatio

n

Worked example 1.14
Subtraction - by adding the two’s complement

Calculate +59 – 19

This is the same as if you calculate (+56) + (–19).

+56 0 0 1 1 1 0 0 0

–19 1 1 1 0 1 1 0 1 +

1 1 1 1 1 This row shows the ‘carry bit’ from each bit addition

Answer 0 0 1 0 0 1 0 1 This is +37 denary

Progress check E
Show the binary calculations.

a (+13) + (+78)

b (+90) – (+92)

Binary Coded Decimal (BCD)

This is an alternative binary representation that can be

used for a positive denary integer. It does not use place

values.

Each denary digit in the sequence is represented as a

group of four binary digits (a nibble).

Worked example 1.15
Represent the denary integer 571 in BCD.

 5 7 1

0101 0111 0001

So, 571 denary is 0101 0111 0001 in BCD.

Applications of BCD

BCD is used in electronics systems where a string of

digits is used to represent some value. BCD has the

advantage that a given number is easily scalable by a

factor of ten. To multiply the number by ten simply add

a group of zero bits to the least significant end. This

calculation is much simpler than multiplying a two’s

complement number by ten.

Progress check F
Write the denary number 184 in BCD.

1.03 Representing characters

All characters must be stored as numbers.

The character set will include upper case letters, lower

case letters, the number digits and all the punctuation

and other characters found on a standard QWERTY

keyboard.

A coding system such as ASCII or Unicode will be used.

Each character will be encoded with a different number.

www.cambridge.org/9781108737326
www.cambridge.org

Cambridge University Press
978-1-108-73732-6 — International AS & A Level Computer Science Revision Guide
Tony Piper
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

9

C
h
ap

te
r 1

 In
fo

rm
atio

n
 re

p
re

se
n
tatio

n

ASCII (American Standard Code for Information Interchange)

The ASCII coding system uses a 7-bit code to represent each of the characters. A selection of the codes is shown in

the table below:

ASCII code table (part)

Character Denary Character Denary Character Denary

<Space> 32 I 73 R 82

A 65 J 74 S 83

B 66 K 75 T 84

C 67 L 76 U 85

D 68 M 77 V 86

E 69 N 78 W 87

F 70 O 79 X 88

G 71 P 80 Y 89

H 72 Q 81 Z 90

The characters with codes 0 to 31 are called control

characters. If you use them in a program, they will cause

some effect – such as a ‘bleep’ (ASCII code 7).

For example, ASCII code 12 causes the paper in the

printer to be ejected.

The maths tells us that 7-bits makes 128 different

codes possible (with binary codes 0000000, 00000001,

…, 1111111).

The computer stores all ASCII codes as a byte (8-bits).

Extended ASCII character set

Consider if all eight bits of the byte were to be used.

The number of different characters that could then

be represented increases to 256. This is called the

extended character set.

Agreement was reached with a standard, called ANSI

as to what all the character codes below 128 would

represent.

But different standards emerged as to how the codes

128–255 would be used. This caused problems as

different countries used a different standard.

This was the reason for the introduction of a new

universally recognised character set called Unicode.

Unicode

Unicode provides a unique number for every character.

This number will be recognised as the same character

on different platforms, and in different programs and

languages.

Different standards exist for Unicode - UTF-8, UTF-16,

UTF-232 and others. UTF-8 is the most widely used on

the WWW.

UTF-8 uses one byte for the first 128 characters, called

code points (the upper and lower case letters, number

digits, etc). The first 128 code points are encoded as a

single byte. Up to 4 bytes are used for other characters.

The first 128 Unicode code points have the same

encoding as the 8-bit ASCII character codes.

Unicode codes have the format:

U+0041. This is the code for character A. The U+

indicates ‘Unicode’ and the digits are the hexadecimal

code to be used. Note, this confirms that this code is

the same as the ASCII code.

All data that is to be used by programs, for example, an

email message or web page, must specify the encoding

method used.

For a typical webpage, the HTML tag would be:
<meta http=equiv=”Content-Type”

content=”text/html ; charset = utf-8”>

1.04 Graphics

Bitmapped image

A bitmap graphic is a rectangular grid built up from a

number of pixels.

Each pixel will be a particular colour and each pixel’s

colour will be stored as a binary number.

www.cambridge.org/9781108737326
www.cambridge.org

Cambridge University Press
978-1-108-73732-6 — International AS & A Level Computer Science Revision Guide
Tony Piper
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10

C
h
ap

te
r 1

 In
fo

rm
atio

n
 re

p
re

se
n
tatio

n

The contents of the bitmap file will be this sequence of

binary colour codes, each representing a single pixel in

the rectangular grid.

The table shows the various encodings used

for bitmaps.

The number of bits used to encode a single pixel is

called the bit depth.

The number of possible colours that can be used is

called the colour depth.

Type of encoding Bit depth Colour depth Explanation

Monochrome 1 bit 2 Only two colours (Black and white).

One byte stores eight pixels.

16 colour 4 bits 16 One byte stores two pixels.

256 colour 8 bits (1 byte) 256 One byte stores one pixel.

24-bit colour

or ‘Tru-colour’

24 bits (3 bytes) 224 i.e. 16,777,216 Millions of different colours are

possible.

The file header data will include the width and height, measured in pixels, the type of encoding and other data, such

as a date stamp.

Bitmap calculations

Worked example 1.16
A bitmapped image has a width of 100 pixels and a height of 50 pixels. The file header uses 60 bytes. The

image is encoded as a ’256 colour’ image. Calculate the file size (in kilobytes).

Number of pixels = 100 x 50 = 5000

Each pixel is stored with one byte … so

Bytes used for the pixel data = 5000

Total file size = pixel data + the file header = 5000 + 60 = 5060 bytes = 5.06 kilobytes

The general formula is:

File size (in bytes) = (Width in pixels x Height in pixels x Bit depth) + Header bytes

Worked example 1.17
An image has a width of 2048 pixels and a height of 128 pixels. The file header uses 100 bytes. The image is

saved as a ’24-bit colour’ image. Calculate the file size (in kibibytes).

Number of pixels = 2048 x 128

Each pixel is stored with 3 bytes …

Bytes used for the pixel data is = 2048 x 128 x 3 = 786432

Total file size in bytes = Pixel data + the file header = 786432 + 100 = 787532 bytes

File size = 787532 / 1024 = 769 kibibytes

www.cambridge.org/9781108737326
www.cambridge.org

