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This expository paper is taken from a series of four talks given at the conference
Groups St Andrews in Birmingham 2017, held in August of 2017. The goal of
those talks was to give the audience some insight into an ongoing program to, first,
classify a certain class of simple 2-fusion systems, and then, second, to use the
result on fusion systems to simplify the proof of the theorem classifying the finite
simple groups (CFSG). But since the talks were delivered to a general audience
of group theorists, most of the presentation was devoted to supplying background.
The same is true of this article, where the program does not formally make an
appearance until fairly late in the game.

Thus we’ll begin with an introduction to the basic theory of fusion systems.
Then we give an overview of the proof of that part of the CFSG devoted to the
groups of component type, after which we discuss how to translate that proof into
the category of 2-fusion systems, and indicate some advantages that accrue from
that translation. We also describe some other changes to the original proof of the
CFSG that are part of the program.

Our basic reference on fusion systems is [2], although [7] also supplies a good
introduction to the subject. Our basic reference on finite groups is [1]. For a more
detailed discussion of the proof of the CFSG see [3].

Fusion systems

Let p be a prime and S a finite p-group. A fusion system on S is a category F whose
objects are the subgroups of S and, for subgroups P,Q of S, the set homF (P,Q)
of morphisms from P to Q is a set of injective group homomorphisms of P into Q,
and that set satisfies two weak axioms:

(1) If s ∈ S with P s ≤ Q then the conjugation map cs : P → Q is a morphism.

(2) If φ : P → Q is a morphism, then so is φ : P → Pφ and φ−1 : Pφ → P .

Call S the Sylow group of F .

Example 1.1 Let G be a finite group, S ∈ Sylp(G), and FS(G) the fusion system
on S whose morphisms are induced via conjugation in G. Call FS(G) the p-fusion
system of G.

We are primarily interested in saturated fusion systems. A fusion system F
is saturated if it satisfies two more axioms, that can be easily seen to hold in
Example 1.1 using Sylow’s Theorem. See [2] for the axioms.
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2 Aschbacher: Finite simple groups and fusion systems

A saturated system F is exotic if it is the fusion system of no finite group;
there exist exotic systems, and indeed for p odd they seem to proliferate. However
2-fusion systems seem to be more well behaved.

Luis Puig, modular representation theory, and algebraic topology

The notion of a fusion system and much of the basic theory of fusion systems
is due to Luis Puig, except that Puig uses different terminology and notation;
see for example [13]. Puig’s primary interest is modular representation theory.
I’m using notation and terminology due to some algebraic topologists, particular
Broto, Levi, and Oliver in [6], since I learned the subject from their papers, and
their terminology has by now become standard.

In short, fusion systems originally arose in the context of modular representation
theory, and remain of significant interest in that area. And of course algebraic
topologists contribute to, and make use of, the theory of fusion systems; for example
the Martino-Priddy Conjecture (now a theorem [11], [12]) says the p-completed
classifying spaces of a pair of finite groups are of the same homotopy type precisely
when their p-fusion systems are isomorphic.

But I’m going to say no more about the role of fusion systems in representation
theory and topology, and instead focus on the relationship between fusion systems
and local finite group theory. However it should be noted that one of the advantages
of the fusion system approach is that it draws on both topology and algebra.

A functor

Let F be a fusion system on S. If F̃ is a fusion system on S̃ then a morphism from
F to F̃ is a group homomorphism α : S → S̃ such that α induces a map from mor-
phisms of F to morphisms of F̃ . For example if α = β|S for some homomorphism

β : G → G̃ then α : FS(G) → FS̃(G̃) is a morphism of fusion systems.

Indeed let G be the category whose objects are pairs (G,S) with G a finite
group and S ∈ Sylp(G), and with a morphism from (G,S) to (G̃, S̃) a group
homomorphism β : G → G̃ with Sβ ≤ S̃. Then we have a functor (G,S) �→ FS(G)
and β �→ β|S from G to the category of saturated fusion systems. The game is to
use this functor to translate notions involving finite groups to analogous notions
concerning fusion systems, and to prove theorems in one of the two categories using
an analogous theorem in the other category.

A local theory of fusion systems

For P ≤ S the set PF of conjugates of P consists of the images Pφ, φ ∈
homF (P, S). In Example 1.1, PF is the set of G-conjugates of P contained in
S.

Define P to be fully normalized, fully centralized if for each Q ∈ PF , we have
|NS(P )| ≥ |NS(Q)|, |CS(P )| ≥ |CS(Q)|, respectively. In Example 1.1, P is fully
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Aschbacher: Finite simple groups and fusion systems 3

normalized precisely when NS(P ) ∈ Sylp(NG(P )). Write Ff for the set of fully
normalized subgroups of S.

The local theory of finite groups studies finite groups G from the point of view of
the local subgroups of G. Here a p-local subgroup of G is the normalizer NG(P ) of
some nontrivial p-subgroup P of G. What is the right notion of a local subsystem
of F?

Let P ≤ S and define NF (P ), CF (P ) to be the subfusion system E of F with
Sylow group T = NS(P ), CS(P ), such that for Q ≤ T , φ ∈ homF (Q,T ) is an
E-morphism if and only if φ extends to ϕ ∈ homF (PQ,PT ) with Pϕ = P , ϕ
centralizing P , respectively.

In Example 1.1, if P is fully normalized then NF (P ) = FNS(P )(NG(P )).

The systems NF (P ) for 1 �= P ∈ Ff , play the role of the local subsystems of
F . We want our local subsystems to be saturated; this follows from the following
fundamental lemma of Puig:

Lemma 1.2 (Puig) Let F be saturated and P ∈ Ff . Then NF (P ) and CF (P )
are saturated.

Define a subgroup P of S to be normal in F , and write P � F , if F = NF (P ).
In Example 1.1 if P � G then P � F = FS(G), but the converse is not in general
true. For example let G be a nonabelian finite simple group with abelian Sylow
p-subgroup S and F = FS(G). Then by Burnside’s Fusion Theorem we have
F = NF (S), so S � F but of course S is not normal in G.

The product of normal subgroups of F is normal in F , so F has a largest normal
subgroup, which we denote by Op(F).

A subgroup P of S is centric if for each Q ∈ PF we have CS(Q) ≤ Q. In
Example 1.1, P is centric if and only if P contains each p-element in CG(P ). Write
Fc for the set of centric subgroups of S.

Next P is radical if Inn(P ) = Op(AutF (P )). Write Fr for the set of radical
subgroups and Ffrc for the set of fully normalized, radical, centric subgroups.

Remark 1.3 Let F be saturated.

(1) One of the axioms of saturation says that if P ∈ Ff then AutS(P ) ∈
Sylp(AutF (P )).

(2) S ∈ Ffrc.

(3) If P ∈ Ffrc − {S} then AutF (P ) is not a p-group.

It is easy to see that S ∈ Ffc, while S is radical by (1). If P ∈ Ffrc and AutF (P )
is a p-group, then as P is radical we have Inn(P ) = AutF (P ). But by (1), AutS(P )
is Sylow in AutF (P ), so AutS(P ) = Inn(P ). Therefore NS(P ) = PCS(P ), and as
P is centric we have CS(P ) ≤ P , so that NS(P ) = P , and hence S = P . That is
(3) holds.
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4 Aschbacher: Finite simple groups and fusion systems

Generation

Let T ≤ S and ∆ a set of morphisms between subgroups of T . The intersection of
any collection of fusion systems on T is again a fusion system on T . Thus there is
a smallest fusion system on T containing ∆, which we denote by 〈∆〉T . Call this
system the subsystem on T generated by ∆.

Theorem 1.4 (Alperin’s Fusion Theorem) Assume F is saturated. Then F =
〈AutF (R) : R ∈ Ffrc〉S .

Remark 1.5 Observe that if Ξ is a set of representatives for the orbits of S on
Ffrc then F = 〈AutF (R) : R ∈ Ξ〉S .

Example 1.6 Let p = 2 and S = Dm be dihedral of order m > 4. Let’s determine,
up to isomorphism, the saturated fusion systems on S.

First S has two conjugacy classes ES
i , i = 1, 2 of 4-subgroups, with E1 and

E2 fused in Aut(S). Moreover for P ≤ S, Aut(P ) is not a 2-group if and only
if P ∼= E4, in which case Aut(P ) = GL(P ) ∼= S3. It follows from Remark 1.3
that for R ≤ S we have R ∈ Ffrc if and only if R = S or R is a 4-group with
AutF (R) = Aut(R), and with R ∈ ES

i for some i in the last case. Hence by
Remark 1.5, up to isomorphism there are three potential saturated fusion systems
on S:

(1) F0 where AutF (Ei) = AutS(Ei) ∼= Z2 for i = 1, 2.

(2) F1 where AutF (E1) = Aut(E1) ∼= S3 and AutF (E2) = AutS(E2) ∼= Z2.

(3) F2 where AutF (Ei) = Aut(Ei) ∼= S3 for i = 1, 2.

For 0 ≤ j ≤ 2 let Gj be a finite group with S ∈ Syl2(Gj) such that G0 = S,
G1

∼= PGL2(q1), and G2
∼= L2(q2) for suitable odd qj . Then Fj = FS(Gj), so Fj

is saturated.

Notice this proof also shows that there are exactly four saturated fusion systems
on S, two of which are isomorphic via an outer automorphism of S.

This is a toy example, but still it begins to suggest one approach to identifying
a saturated fusion system F : find a small collection of “nice” subsystems of F that
generate F , and show the corresponding amalgam of fusion systems is determined
up to isomorphism by some suitable list of properties.

Factor systems

Given a group G, the homomorphic images of G are the factor groups G/H for
H � G, so such images are parameterized by the normal subgroups of G. The
morphic images of a fusion system F are parameterized by the strongly closed
subgroups of S.

A subgroup T of S is strongly closed in S with respect to F if for each t ∈ T ,
we have tF ⊆ T . In Example 1.1, if H � G then S ∩H is strongly closed in S with
respect to FS(G).
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Aschbacher: Finite simple groups and fusion systems 5

Let T be strongly closed in S. We can define a fusion system F/T on S/T such
that the natural map s �→ sT is a surjective morphism of fusion systems from F
onto F/T . The construction is the only one that could possibly work, and it is
easy to show it works when T � F ; in the general case, some effort is required. If
F is saturated, then so is F/T .

In Example 1.1 if H � G and T = S ∩H then F/T ∼= FSH/H(G/H).

Later we will define the notion of a “normal subsystem” of a saturated fusion
system. If E � F has Sylow group T then T is strongly closed and we can define
the factor system F/E to be F/T .

Finite simple groups

We now, for the moment, leave the topic of fusion systems, and consider instead
the finite simple groups and their classification. Recall:

Theorem 1.7 (Classification Theorem) Each finite simple group is isomorphic
to one of the following:

(1) A group of prime order.

(2) An alternating group An, for some n ≥ 5.

(3) A finite simple group of Lie type.

(4) One of 26 sporadic simple groups.

I’ll assume we are all familiar with the groups of prime order and the alternat-
ing groups. The groups of Lie type are linear groups, so each has an associated
prime: the characteristic of the field of the defining vector space; call this prime
the characteristic of the group. The sporadic groups live in a natural way in no
known infinite family of simple groups.

Eventually we will want to consider the 2-fusion systems of the simple groups,
and use our functor to get information about those systems, and about simple
2-fusion systems in general. But first I want to discuss part of the proof of the
Classification Theorem. To begin we need a few concepts and the associated nota-
tion.

The generalized Fitting subgroup

Let G be a finite group. Define G to be quasisimple if G = [G,G] and G/Z(G)
is simple. The components of G are its subnormal quasisimple subgroups, where
subnormality is the transitive extension of the normality relation on subgroups of
G.

Let E(G) be the product of the components of G; it turns out that E(G) is a cen-
tral product of the components: that is distinct components commute elementwise.
Let F (G) be the largest normal nilpotent subgroup of G and F ∗(G) = F (G)E(G);
then F ∗(G) is the central product of F (G) with E(G). We call F ∗(G) the gener-

alized Fitting subgroup of G.
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6 Aschbacher: Finite simple groups and fusion systems

It turns out that CG(F
∗(G)) = Z(F ∗(G)), so F ∗(G) controls the structure of

G in the sense that the image of G in Aut(F ∗(G)) under the conjugation map is
isomorphic to G/Z(F ∗(G)). Thus we can retrieve G, with little loss of information,
from its generalized Fitting subgroup.

See [1] for a detailed discussion of the generalized Fitting subgroup.
The generalized Fitting subgroup is one of the important basic notions in the

local theory of finite groups; this will become evident after more discussion.
Define O(G) to be the largest normal subgroup of G of odd order; Gorenstein

called O(G) the core of G. The CFSG focuses on 2-local subgroups of G; the
cores of 2-locals cause significant difficulties in the CFSG. One of the advantages of
working with 2-fusion systems is that such difficulties vanish, since cores disappear
when we apply our functor, as the following lemma suggests:

Lemma 1.8 Let ∗ : G → G/O(G) = G∗ be the natural homomorphism ∗ : g �→
gO(G) = g∗ and S ∈ Syl2(G). Then ∗ : FS(G) → FS∗(G∗) is an isomorphism.

One consequence of Lemma 1.8 is that if F is the 2-fusion system of a finite
group then F is the 2-fusion system of an infinite number of finite groups. Hence
it would seem that when applying our functor from finite groups to fusion systems,
we lose a lot of information. While this is true, it may also be true that the lost
information only serves to confuse many issues, and it may be an advantage to
discard it.

Let L0 be the preimage in G of E(G/O(G)) and L(G) = L∞
0 be the last term

in the derived series for L0. We call L(G) the layer of G. Observe that L0 =
L(G)O(G).

The following result is due to Gorenstein and Walter; see [1] for a proof, modulo
an appeal to the Schreier Conjecture.

Theorem 1.9 (L-Balance Theorem) For each 2-subgroup P of G we have
L(CG(P )) ≤ L(G).

The groups of Lie type of characteristic 2 have a different 2-local structure than
those of odd characteristic. We seek to capture that difference in the general finite
group in abstract group theoretic terms, rather than in the context of linear groups.

Define G to be of component type if L(CG(t)) �= 1 for some involution t of G;
roughly speaking, the centralizer in G of some involution has a component. Define
G to be of characteristic 2-type if F ∗(H) = O2(H) for each 2-local subgroup H of
G.

Remark 1.10 If G is a simple group of Lie type and even characteristic, then G
is of characteristic 2-type. On the other hand almost all simple groups of Lie type
and odd characteristic, other than L2(q), are of component type. The alternating
groups An for n > 8 are of component type. Some sporadic groups are of component
type and some are of characteristic 2-type.

In short, if we seek to partition the simple groups into “even” and “odd” groups
in terms of their 2-local structure, and in such a way that the groups of Lie type
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Aschbacher: Finite simple groups and fusion systems 7

and even characteristic are “even”, while those of Lie type and odd characteristic
are odd, then we are led to define the even groups to be those of characteristic
2-type and the odd groups to be those of component type. Later we will see that
this odd-even partition of the simple groups is perhaps not the optimal choice. But
first let us see that, at least generically, each simple group is either odd or even
using this definition:

Theorem 1.11 (Gorenstein-Walter Dichotomy Theorem) Assume O(G) =
1 and m2(G) > 2. Then G is of component type or characteristic 2-type.

See [3] for a proof of the Dichotomy Theorem.

Herem2(G) is the 2-rank of G: the maximumm such that G contains a subgroup
that is the direct product of m groups of order 2. The groups of 2-rank 2 should be
thought of as “small” groups. Thus the Dichotomy Theorem says that, generically,
each core-free finite group is either odd or even. Then the proof of the CFSG treats
the small simple groups, the odd simple groups, and the even simple groups, using
different methods for each type of group.

We are interested in simplifying the treatment of the odd simple groups. The
most obvious advantage gained by treating the odd simple groups (as odd fusion
systems) in the category of 2-fusion systems, comes from avoiding obstructions
presented by cores of 2-locals, since, by Lemma 1.8, these cores vanish when we
apply our functor.

In the treatment of groups of component type, the biggest obstacle mounted by
core obstruction arises from the necessity to verify the B-Conjecture:

B-Conjecture. If O(G) = 1 then for each involution t in G, we have L(CG(t)) =
E(CG(t)).

The proof of the B-Conjecture is difficult and indirect. See [3] for more discussion
of the B-Conjecture.

Given a simple group G of component type, and assuming the B-Conjecture,
we can consider the set C(G) of components of centralizers of involutions. If L is
a component of CG(t) for some involution t, s is an involution centralizing t and
L, and Gs = CG(s), then L is a component of CGs

(t), so by L-Balance and the
B-Conjecture, we have L ≤ L(Gs) = E(Gs). Indeed there exists a component K
of Gs such that either K �= Kt and L = E(CKKt(t)) is an image of K, or L pumps

up to K: K = Kt and L is a component of CK(t). Keeping track of the pump
up “ordering” on C(G) and playing some combinatorial games, we are able to pin
down the centralizer of an involution possessing a “maximal” member of C(G).
Then, as in the Brauer program, we identify G from this centralizer. I’ll be a bit
more precise about what such a centralizer looks like later.

We seek to make an analogous argument in the category of 2-fusion systems. To
do so, we must translate notions like “simple”, “quasisimple”, “component”, etc.,
and theorems like L-Balance and the Dichotomy Theorem into analogous results
on 2-fusion systems. The first crucial step in that process is to identify a notion of
“normal subsystem” of a saturated fusion system.
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8 Aschbacher: Finite simple groups and fusion systems

Normal subsystems

Let F be a fusion system on a p-group S. We begin with the notion of an F-
invariant subsystem. There are at least three equivalent definitions of such a sys-
tem; here is one. Let E be a subsystem of F on T . We say that E is F-invariant

if T is strongly closed in S with respect to F and for each P ≤ Q ≤ T , each
φ ∈ homE(P,Q), and each α ∈ homF (Q,S), we have φα∗ ∈ homE(Pα, T ), where
φα∗ = α−1φα.

The notion of F-invariance is well behaved, but it has one draw back: even when
F is saturated, an invariant subsystem need not be saturated. Fortunately there
is an easy way to correct this.

Assume F is saturated and define a subsystem E of F to be weakly normal in F
if E is F-invariant and saturated. Finally E is normal in F if E is weakly normal
in F and satisfies the extension condition: for each α ∈ AutE(T ), α extends to
α̂ ∈ AutF (TCS(T )) such that [α̂, CS(T )] ≤ Z(T ). Write E � F to indicate that E
is normal in F .

If P is a subgroup of S normal in F then FP (P ) � F . In Example 1.1, if H � G
then FS∩H(H) � FS(G). The converse is in general false; as we saw in an earlier
example, if G is simple and S abelian then S � FS(G) but S is not normal in G.

Define F to be constrained if there is a centric subgroup of F normal in F .
In Example 1.1, if F ∗(G) = Op(G) then FS(G) is constrained as CG(F

∗(G)) =
Z(F ∗(G)). Define amodel of a constrained system F to be a group G with F ∗(G) =
Op(G) and FS(G) = F . The topologists have shown in [5] that:

Theorem 1.12 (Model Theorem) If F is a constrained saturated fusion system
then F has a model G, and G is unique up to an isomorphism which is the identity
on S.

Theorem 1.13 Let F be a constrained saturated fusion system with model G.
Then the map H �→ FS∩H(H) is a bijection between the normal subgroups of G
and the normal subsystems of F .

The invariance condition is part of the definition of “normal subsystem” to insure
our functor is bijective in Theorem 1.13.

Given a notion of “normal subsystem”, we can now translate many notions from
finite group theory to analogous notions about saturated fusion systems. As in the
case of groups, subnormality for fusion systems is the transitive extension of the
normality relation. Our saturated system F is simple if it has no nontrivial normal
subsystem.

There is a smallest normal subsystem E of F such that F/E is the system of a
p-group; denote this system by Op(F). Define F to be quasisimple if F = Op(F)
and F/Z(F) is simple. Define the components of F to be its subnormal quasisimple
subsystems.

It can be shown that F has a normal subsystem E(F) that is the central product
of the components of F . Further E(F) centralizes Op(F) and F has a normal
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Aschbacher: Finite simple groups and fusion systems 9

subsystem F ∗(F) which is a central product of Op(F) and E(F). Call F ∗(F) the
generalized Fitting subsystem of F ; it can be shown that CF (F

∗(F)) = Z(F ∗(F)).

Theorem 1.14 (E-Balance Theorem) For each P ∈ Ff , E(CF (P )) ≤ E(F).

Define F to be of characteristic p-type if for each 1 �= P ∈ Ff , we have NF (P )
is constrained. Define F to be of component type if for some P ∈ Ff of order p,
E(CF (P )) �= 1.

Theorem 1.15 (Dichotomy Theorem for Fusion Systems) Let F be a sat-
urated fusion system on a p-group S. Then F is either of characteristic p-type or
of component type.

The Dichotomy Theorem for fusion systems is stronger and has a more elegant
statement than the Dichotomy Theorem for groups. It is also easier to prove.

Beginning the program

Given the Dichotomy Theorem for Fusion Systems it makes sense to attempt to
classify the simple 2-fusion systems of component type using the classification of
the simple groups of component type as a template. In actual fact I propose to do
something a bit different, but a discussion of those changes is perhaps best put off
for a while.

The CFSG proceeds by induction on the group order, so one considers a simple
group of minimal order subject to not being on the list of “known” simple groups.
In such a group G each proper simple section of G is known. We will make a related
assumption on our fusion systems.

Let K be the class of “known” simple 2-fusion systems, and K̃ the class of
“known” quasimple 2-fusion systems: those whose central factor system is in K.
I’ll say a few words about these two classes shortly.

Let F be a saturated fusion system on a 2-group S. Define C(F) to be the set
of components of centralizers of involutions in F ; that is C ∈ C(F) if there exists
some involution t in S and a conjugate (t̄, C̄) of (t, C) such that t̄ is fully centralized
and C̄ is a component of CF (t̄). Thus F is of component type if C(F) is nonempty.
We will assume that each member of C(F) is in K̃.

Notice that we must pass to a conjugate (t̄, C̄) with t̄ fully centralized, so that
we can apply Lemma 1.2 to insure that CF (t̄) is saturated. This is necessary as
components are only defined for saturated systems.

As in the CFSG, we have the pump up relation on C(F), and we wish to show
that if C is “maximal” with respect to this relation then the centralizers of involu-
tions centralizing C are controlled. Finally we want to show the existence of such
centralizers forces F to be isomorphic to a member of K. Let us see in more detail
what this means for groups:

LetG be a finite group with O(G) = 1, satisfying the B-conjecture. Let L ∈ C(G)
have no proper pumpups, and set K = CG(L). Then (essentially) either

(1) L ∈ Comp(G), or
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10 Aschbacher: Finite simple groups and fusion systems

(2) L is standard in G: that is NG(L) = NG(K), L commutes with none of its
conjugates, and K is tightly embedded in G.

Here a subgroup K of G is tightly embedded in G if |K| is even, but |K ∩ Kg|
is odd for all K �= Kg. It can be shown that in case (2), a Sylow 2-subgroup Q
of K is small; namely either m2(K) = 1 or Q is elementary abelian, and then in
the latter case, even Q ∼= E4. Thus the centralizer CG(t) of an involution t in K
closely resembles the centralizer CḠ(t̄) of some involution t̄ in some known simple
group Ḡ, and this can be used to show G ∼= Ḡ is known.

For example if Ḡ ∼= An with n > 8 then Ḡ has a standard subgroup L̄ ∼= An−4

with Q̄ ∼= E4. And if Ḡ is of Lie type over a field of odd order q, then usually
Ḡ has a standard subgroup L̄ of Lie type over Fq with K̄ ∼= SL2(q), so that Q̄ is
quaternion.

As a first step toward proving K is tightly embedded in G, one uses the condition
that L has no proper pumpups to show L ∈ Comp(CG(i)) for each involution i ∈ K.
With a little care, it is possible to establish an analogous statement for fusion
systems. One can also define the notion of a “tightly embedded subsystem” of a
saturated fusion system, and prove the necessary theorems for such subsystems.
But then we encounter a difficulty:

Problem. If F is a saturated fusion system and E is a subsystem of F , we do not
know how to define the normalizer or centralizer in F of E , except in very special
situations.

Because of the Problem, it is not straightforward to define a notion of a “standard
subsystem” of a fusion system analogous to the notion of a standard subgroup
defined above, but it is possible.

In short, the necessary notions from the CFSG do not all translate to fusion
systems in a straightforward manner, but by and large it seems that such difficulties
can be overcome. We will return to such details later; first let us discuss K.

The class K of known simple 2-fusion systems

Let F be a saturated fusion system on a 2-group S. Recall that F is exotic if
F is realized by no finite group. There is one known class of exotic simple 2-
fusion systems: the exotic Benson-Solomon systems FSol(q), for q an odd prime
power. If F is such a system then F has one class of involutions zF and CF (z) is
the 2-fusion system of Spin7(q), which is quasisimple, so F is of component type.
The isomorphism type depends only on the 2-share (q2 − 1)2 of q2 − 1, not on q.
The systems were “discovered” by Benson in a topological context, and earlier by
Solomon as part of the CFSG, but these “discoveries” took place before the notion
of a fusion system really existed.

So assume F is simple and realized by a finite group G. Then it is easy to
see that we may choose G to be simple, so we need to examine the known simple
groups G to see when FS(G) is simple. A sufficient condition is to show that,
first, S is the smallest nontrivial strongly closed subgroup of S, and, second, that
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