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1 Math for Evolution: Holy Grail or Poisoned Chalice?

Like any other advanced science, contemporary evolutionary theory is highly

mathematized. The history and dynamics of evolutionary processes are described

and explained in the language of probability, differential equations, and linear

algebra, as can be easily confirmed by a look at major journals like Evolution,

Genetics, or The American Naturalist or standard textbooks on evolutionary

genetics. This is in stark contrast with Darwin’s Origin of Species, which estab-

lished the fact and principle of evolution with an overwhelmingmass of empirical

examples but not a single equation. Evolutionary theory, therefore, was mathe-

matized at some point after its birth – but when, and why?

Although mathematics surely did not give birth to Darwin’s theory, it saved

its life, or at least the life of one of its halves – halves, because Darwin

submitted two logically independent theses in his Origin. One is the historical

hypothesis that diverse forms of life on earth have emerged by the branching

of a few or possibly just one primitive kind. This is called the principle of

common descent, the one that tells you that humans are distant relatives of

bacteria. Darwin’s second thesis, which was also independently proposed by

AlfredWallace, is the famous principle of natural selection, which claims that

evolutionary changes and speciation occur because individuals in a population

differ in their ability to survive and reproduce, and these abilities tend to be

inherited by their offspring.

Of these two theses, the principle of common descent was soon accepted with

little antagonism, at least in the scholarly circle of the late nineteenth century.

Many biologists, however, resisted the idea of natural selection as a major cause

of such historical changes for three reasons (Provine, 2001). The first source of

disagreement was insufficient knowledge about the mechanism of inheritance.

Darwin presupposed a sort of “blending” inheritance, whereby parents’ charac-

teristics mix in their offspring’s phenotype so that if a new mutant with an

advantageous characteristic mates with an average individual in the population,

their offspring will show an intermediate character. But this entails that any

advantageous trait that arises with a single mutant in a population will be diluted

away after a few rounds of sexual reproduction, well before it could be spread

throughout the population or species by selection (Fig. 1.1). Selection would then

require a large number of mutational inputs to change the population structure,

making it nomore than a negligible factor. The second issue came from failures of

contemporary experiments that tried to create a new species or a significant

variant with visible morphological differences by repeated artificial selection in

the laboratory. The negative results of these experiments suggested the existence

of a deep gap between species that natural selection cannot overcome.
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Sympathizers of Darwin could and did respond that adaptive processes take

a much longer time than the duration of these experiments; but having no

means to confirm consequences of such lengthy processes, their rebuttal remained

speculative and held no water against most contemporary critics with a positivist

slant who, in the wake of experimental biology, put much emphasis on well-

controlled and reproducible experiments. The third obstacle for the Darwinian

theory concerned its compatibility with Mendelian genetics, which was redis-

covered around the beginning of the twentieth century and soon became accepted

as a correct description of the mechanism of inheritance. Mendel’s pea experi-

ment showed that organismal characteristics “jump” from one type to another

(yellow or green, smooth or wrinkled) by the transmission of discrete factors we

now call genes or alleles. This result, however, seemed to contradict Darwin’s

claim that evolution by natural selection is a gradual process that acts on subtle,

and mostly continuous, variations. Moreover, such a gradual evolution appeared

to be far less effective. Upon the observation that significant morphological

changes are often triggered by single genetic replacements, Mendelian geneticists

concluded that the creation of new variants or “sports” by such mutations plays

a far more important role in major evolutionary changes and speciation than does

selection. Faced with these criticisms and difficulties, the Darwinian theory of
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Figure 1.1 If parents traits “blended” in offspring’s phenotype, a rare beneficial

characteristic would be diluted away before selection can act on it. InMendelian

inheritance, a parent’s allele is passed on to offspring as it is.
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natural selection around the turn of the twentieth century was almost abandoned,

even to the extent that American biologist Vernon Kellogg worried that

Darwinism was on its “death-bed” (Bowler, 1983).

As seen from the discussion above, the skepticism against natural selection

was targeted at its efficacy. The suspicion was not that natural selection is

impossible, but that it plays only a minor and secondary role compared to

other evolutionary forces such as mutation. To this question of degree,

Darwin’s qualitative and schematic arguments in his Origin had no substantive

answer. The resolution of these issues had to wait for the integration of Darwin’s

theory with the Mendelian theory of genetics, in which mathematical formula-

tions of selection and reproduction played an essential role in showing how and

to what extent selection can alter biological populations (Provine, 2001, ch. 5).

On the first problem of blending inheritance, G. H. Hardy and W. Weinberg

independently found in 1908 that in the absence of other evolutionary forces

(such as selection or migration) the genotype frequency of a Mendelian popula-

tion stabilizes at a fixed ratio we now call the Hardy–Weinberg equilibrium. If,

for instance, there are two alleles A,a in the population with the frequencies

PrðAÞ ¼ p and PrðaÞ ¼ q ¼ 1� p, the relative frequencies of the three geno-

types AA:Aa:aa stay p2 : 2pq : q2. This implies that a variation introduced into

a population as a few mutant alleles will not get diluted away but will remain as

it is, giving room and opportunity for selection to increase its frequency. But

how long does this process take? To examine the second skeptical argument that

selection alone cannot achieve much evolutionary change, R. C. Punnett and his

fellow mathematician H. T. J. Norton calculated the number of generations

required for selection to change gene frequency in a population (Punnett, 1915).

The result of their numerical calculation showed that even a trait with the

slightest selective advantage can sweep through a population in a relatively

short period, vindicating the efficacy of gradual selection. These mathematical

developments culminated in Ronald Fisher’s (1918) formal integration of the

Darwinian theory of selection with Mendelian genetics, which reduced gradual

evolution of continuous traits (such as height) to frequency changes of a large

array of underlying genes, each having a small phenotypic effect. This result

allowed Fisher to calculate and predict the evolutionary response of a contin-

uous phenotype to a given selective pressure (see Section 5) and to reformulate

the Darwinian gradual evolution within the Mendelian framework, showing

their logical consistency. These theoretical developments dispelled the skepti-

cism against the Darwinian theory, and in the early 1920s natural selection came

to be acknowledged as one of the most important forces to produce evolutionary

change.
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The formal integration with Mendelian genetics not only helped Darwin’s

theory of natural selection, but also put mathematics at the center of evolu-

tionary studies. Fisher’s work, along with other seminal contributions by

S.Wright and J. B. S. Haldane, gave birth to the new field of population genetics

and formed the theoretical core of the “Modern Synthesis,” the standard para-

digm of evolutionary studies in the twentieth century. The canonical evolu-

tionary theory characterizes organisms by two aspects, genotype (a set of genes

organisms possess) and phenotype (any other physiological, morphological,

or behavioral features such as height or metabolic rate), and accordingly a

population of organisms by its genetic and phenotypic distributions.

Population distributions can be formally represented as points in genetic or

phenotypic spaces, in which evolutionary processes are conceptualized as

trajectories or movements of these points (Lloyd, 1988). Since genotypic and

phenotypic characterizations are two sides of the same coin, evolution in each

space does not proceed independently but rather runs side-by-side. Lewontin

(1974, see also Fig. 1.2) illustrates this tandem evolution as consisting of four

transitional steps, namely: (T1) development from fertilized eggs/genotype into

adult form/phenotype; (T2) change in phenotypic distributions due to selection,
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Figure 1.2 Schematic representation of evolutionary processes adopted from

Lewontin (1974). G and P are respectively genotypic and phenotypic

descriptions of an evolving population, with T1 ~ T4 denoting steps in the life

cycle. (T1) A population of fertilized eggs (zygotes) G1 develops into

a population of adult individuals P1. (T2) Selection and other evolutionary

forces act to alter the population composition. (T3) Surviving individuals P1
0

create eggs and sperm (gametes) G1
0
. (T4) Gametes combine and form the

zygotes G2 of the next generation, and the process continues. Although phe-

notypic and genotypic evolution thus proceed in tandem, most models focus on

tracking changes in one dimension, as indicated by the dashed arrows.
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migration, etc.; (T3) gamete (eggs and sperm) production by surviving

individuals; and (T4) fertilization and formation of new genotypes. The

“horizontal” transitions T2 and T4 represent shifts in phenotypic or genoty-

pic distribution of a population by various evolutionary factors, while the

“vertical” transitions T1 and T3 transcribe back and forth between the

phenotypic and genotypic aspects of the population. The goal of population

genetics is to build a mathematical model that takes into account all these

transitional steps so that it accurately tracks the entire evolutionary

trajectory.

In reality, however, most mathematical models focus on evolutionary

dynamics in just one layer. Genetic models aim to directly calculate the change

in genetic frequencies from Gi to Gi+1, while phenotypic models are concerned

exclusively with the shift in phenotypic features from Pi to Pi+1 (Fig. 1.2,

dashed arrow). Such calculations are achieved by building a proper transition

function. Let X denote either phenotypic or genotypic profile of a population,

and DX :¼ Xiþ1 � Xi the change of the population profile between two genera-

tions. A transition function has the form

DX ¼ f ðX ; α; β; . . .Þ

where α,β,. . . are parameters of the function that summarize the developmental

or evolutionary factors at work in the steps T1 ~ T4 above. If the function and

parameters well capture these processes, one can successfully derive the evolu-

tionary change based on the present state X of the population. The task of

population genetics thus boils down to identifying the form of the transition

function and determining its parameters for the evolutionary process under study.

As a concrete example, consider the following one-locus population genetics

model that describes the change in the population frequencies p,q of alleles A,a

in response to selection:1

Dp ¼ f ðp;q;wÞ

¼
pq½pðwAA � wAaÞ þ qðwAa � waaÞ�

p2wAA þ 2pqwAa þ q2waa

(1.1)

(Note that the lowercase p here denotes a genetic frequency and not

a phenotypic one as denoted by the capital P above.) Here, the frequency change

Δp is determined from the current allele frequencies (p and q) and three fitness

parameters w ¼ ðwAA;wAa;waaÞ, which represent the chance of survival from

1 This Element considers only infinite-population models, where population dynamics is determi-

nistic with no drift.
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birth to the adult stage; so if eight out of ten AA individuals survive to reproduce,

wAA ¼ 0:8. Since the survival rate reflects the strength of selection, Eqn. 1.1 can

be thought of as describing how the population frequencies change – that is,

evolve – in response to selection. Just to give an idea, suppose further

wAa ¼ waa ¼ 0:5, that is, half of Aa and aa individuals die before reproduction.

We also assume the initial population contains the same amount of A and

a alleles, so that p ¼ q ¼ 0:5. When we plug these figures into Eqn. 1.1, the

change in the frequency is calculated as follows:

Dp ¼
ð0:25Þ½ð0:5Þð0:8� 0:5Þ þ ð0:5Þð0:5� 0:5Þ�

ð0:25Þð0:8Þ þ 2ð0:25Þð0:5Þ þ ð0:25Þð0:5Þ
≈ 0:065 (1.2)

Thus, the frequency of A allele will increase to about 56.5%, in response to

selection favorable for AA individuals. This process can be reiterated to yield

the population frequencies of arbitrary generation (Fig. 1.3).

Although this model only deals with selection, other evolutionary factors

such as mutation, migration, randomness (drift), population structure, and so
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Figure 1.3 Simulation of evolutionary trajectories generated from repeated

applications of Eqn. 1.1 with three different fitness parameters, all starting from

the initial frequency p = 0.01. Scenario 1 (wAA : wAa : waa ¼ 0:8 : 0:5 : 0:5) is

the example in the main text, and in this case A almost reaches fixation in less

than 200 generations. A evolves even faster in Scenario 2

(wAA : wAa : waa ¼ 0:8 : 0:65 : 0:5) where the heterozygote fitness is

intermediate (i.e., no dominance). The adaptive evolution slows down in

Scenario 3 (wAA : wAa : waa ¼ 0:8 : 0:65 : 0:65) where the fitness difference is

less significant.
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forth can be incorporated into the model, and their relative importance in

evolutionary processes can be assessed by comparing the model’s prediction

and actual observations. If, for example, a target population did not respond as

predicted by Eqn. 1.2, we may infer either that our fitness estimate was incorrect

(i.e., wrong parameters) or that other evolutionary forces not included in the

model were at work (wrong functional form).

Models can also be used the other way around to estimate parameters. From

the early nineteenth to the mid-twentieth centuries in a forest near Manchester,

a dark (melanic) form of peppered moth, Biston betularia, increased its fre-

quency at the expense of the original light-colored form. When a model like the

one above was fitted to the actual records of frequency change, it was estimated

that the light-colored moths had two-thirds the survival rate of melanic moths,

so that wlight : wdark ¼ 2 : 3. In these ways, population genetics models have

enabled prediction, estimation, and testing of evolutionary dynamics and fac-

tors in a quantitative, hypothetico-deductive fashion.

These rigorous and formal treatments of evolutionary dynamics took on great

significance not only for their predictive value, but also for their metascientific

implications for the status of evolutionary theory. Unsurprisingly, the rise of

modern evolutionary theory has generated much philosophical reflection on its

theoretical status, especially its integrity and relationship to the physical

sciences (Smocovitis, 1996, ch. 5). One of the primary contributors to the

Modern Synthesis, J. B. S. Haldane (1931, p. 150) stressed that “biology must

be regarded as an independent science with its own guiding logical ideas, which

are not those of physics.”What concerned him was the reductionist atmosphere

of the time engendered by adamant physicists like Lord Kelvin, who infamously

proclaimed that every natural phenomenon eventually could be explained by

combinations of physical laws, making the rest of the sciences just applied

physics or even “stamp collecting.” In order for evolutionary biology to be an

autonomous and respectable science, thought Haldane, it must have its own set

of laws or “guiding logical ideas” that are as rigorous as those of physics but not

reducible to them. Population genetics, with its quantitative treatment

of evolutionary change, was expected to provide just such laws of evolution.

It is for this reason that Fisher (1930) called his formula on the rate of adaptive

change the “fundamental theorem of natural selection” and likened it to the

second law of thermodynamics. This basic formula, Fisher proclaimed, holds

true “of any organism at any time,” and the existence of such universal laws of

evolution was taken to establish evolutionary biology as a rigorous scientific

discipline with its own principles.

The search for universal laws has led to abstraction and distillation of the

logical essence of the evolutionary process. Darwin formulated evolution by
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natural selection as a necessary consequence of three conditions, namely (i)

phenotypic variation (organisms in a population are not all the same but differ

from each other), (ii) associated fitness variation (difference in phenotype results in

a difference in organisms’ chance of survival and reproduction), and (iii) heritability

(offspring resemble their parents) (Darwin 2003, ch. 4; Lewontin 1970). Presented

as such, the argument does not make any substantive assumption about the biology

of an evolving population. Indeed, any collection of entities – even inanimate

things – that make their “copies” at differential rates evolves through the process

of natural selection according to this construal. For this reason some biologists have

concluded that adaptive evolution in its purest form is a logical fact, holding true of

any population in arbitrary environmental circumstances as long as it satisfies very

general premises (e.g., Endler, 1986; Ridley, 2004)

The Darwinian syllogism derives adaptive evolution from the three

conditions. But can we be more precise and calculate how much a particular

population quantity, say its mean height or weight, changes due to selection and

other evolutionary factors? The answer is yes. The so-called Robertson-Price

identity or simply the Price equation (Robertson, 1966; Price, 1970) gives the

change in the mean of any phenotypic character between two generations,

expressed by DZ, as a statistical function:

DZ ¼ CovðW,Z
0

Þ=W þ δZ : (1.3)

The variablesW, Z;Z
0
and δZ in the equation quantify properties of individuals

in the population. The fitness W is simply the number of offspring, so if an

individual has two offspring its W value is 2.2 Z quantifies any phenotypic

characteristic of an individual, while Z
0
is the average phenotypic value of its

offspring; so if we are interested in weight, and the above individual weighed 9

grams while its two offspring weighed 8 and 12 grams, its values of Z and Z
0

are

9 and 10 respectively. Finally, δZ is defined as Z
0
� Z, that is, the difference

between the phenotypic value of a parent and the average phenotypic value of its

offspring, and is often interpreted as the transmission bias. For the above

individual, this value is 10� 9 ¼ 1. That is, the offspring produced from this

individual were on average 1 gram heavier.

With this in mind, the Price equation can be explicated in two parts.

The first term CovðW,Z
0
Þ=W is the covariance of the fitness and the average

offspring phenotype divided by themean fitness. Since the mean fitness is never

negative, the sign of this term is entirely determined by how the two variables

2 Here we assume asexual reproduction for expository convenience. In the case of sexual reproduc-

tion fitness must be divided by two to take into account the fact that each offspring has two

parents.
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W and Z
0

covary. If the covariance is positive and (as in the above case)

individuals having heavier offspring tend to leave more offspring, this term

tends to push up the mean population weight, but the reverse if those individuals

tend to procreate less. This term thus captures Darwin’s basic idea that

a characteristic contributing to fitness (that is, number of offspring) will spread

in a population. The second term δZ , in contrast, is the mean transmission bias

and measures whether and to what extent offspring on average differ from their

parents, irrespective of selection (because this term does not contain fitnessWas

a factor). Combining these terms together, the Price equation calculates the

mean phenotypic change DZ of a population from the quantitative expressions

of selection and the transmission bias.

The striking fact about Eqn. 1.3 is that it is obtained through pure deduction

as a mathematical theorem that follows from the basic axioms of probability

theory and the definitions of mean and covariance (see, e.g., Okasha, 2006;

Frank, 2012, for accessible expositions). Free from any biological or empirical

assumption, the equation is thus applicable to any population change, just as

7þ 5 ¼ 12 holds true of any countable objects. Due to this logical austerity and

universality, the Price equation has played essential roles in theoretical biology

(Frank, 1995, 2012; Luque, 2017) and is often touted as “the most fundamental

theorem of evolution” (Queller, 2017).

All the refinement and purification of evolutionary principles, however, has

invoked a philosophical puzzle: why can such mathematical theorems tell

anything at all about actual and concrete evolutionary processes? In part, this

is an echo of an old philosophical conundrum dubbed by EugeneWigner (1960)

as “the unreasonable effectiveness of mathematics in the natural sciences.” Ever

since Galileo, scientists have made use of mathematics to study empirical and

causal structures of the world, evidently with great success. But why do

mathematical theories, which are seemingly constructed “in our head,” describe

the world, which is obviously “outside our head”? This question has been asked

time and again by, to name just a few, Descartes, Kant, and the logical positi-

vists, each in response to the contemporary developments of the natural

sciences: Galilean physics (in the case of Descartes), Newtonian mechanics

(Kant), relativity theory (logical positivists), and quantum mechanics (Wigner).

Just as the successes of these physical theories have invited metaphysical

reflections on the conditions that would sanction the use of mathematics in

the physical sciences, the development of population genetics in the twentieth

century naturally led philosophers to a similar inquiry regarding the role and

nature of mathematical reasoning in evolutionary studies.

In effect, the unreasonableness of the effectiveness of mathematics is even

more acute in the case of evolutionary biology due to the aforementioned
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a priori character of its fundamental principles. Physics does extensively use

abstract mathematical formulae, but the ultimate arbiter is Nature. The truth or

falsity of Newton’s or Einstein’s laws is not guaranteed by mathematics alone.

You need observations and experiments to decide which, if any, are true –

otherwise, Eddington could have better sat in his armchair and calculated, rather

than mounting his famous expedition to the island of Principe. In this sense,

these equations are not themselves products of mathematics but rather mathe-

matical expressions of empirical hypotheses. In contrast, we have just seen

above that the fundamental principles of evolution are often considered to be

mathematical theorems that hold without any empirical assumptions. We don’t

need any observation or experiment to bear out the Price equation, because its

truth is entailed by probability theory alone. But if so, it is all the more puzzling

why such a priori statements could sustain hypotheses about historical origins of

species or predictions about future evolutionary trajectories. This puzzlement

gave rise to a suspicion that evolutionary theory is in fact not an empirical

theory with falsifiable hypotheses but rather an elaborated set of tautologies

(Smart, 1959; Popper, 1974). The apparent a priori-ness of evolutionary prin-

ciples also casts a shadow on Haldane’s hope for the autonomy of biology, for if

the putative laws of evolution turn out to be mathematical facts that would

obtain regardless of any empirical conditions, it would be utterly unclear why

they could serve as the basis for the autonomy and integrity of biological

sciences.

At stake here is not just the empirical nature but also the predictive capability

of evolutionary theory. Darwin’s principle of natural selection arrives at adap-

tive change from the premise that individuals in a population differ in their

capacity to survive and reproduce and that the capacity is heritable. This

reasoning is apparently ampliative, that is, its conclusion seemingly delivers

new information that was not included in the premises. In other words, evolu-

tionary change is predicted from the heritable differences in fitness, and, as we

have seen, this predictive ability of Darwin’s principle, backed up with quanti-

tative formulations of population genetics, played a central role in its acceptance

among biologists in the early twentieth century. But how is such ampliative

reasoning possible if the underlying principle was a logical or mathematical

truth? Logical deductions may explicate the information contained in the pre-

mises, but never extend our knowledge beyond them. Hence, should Darwin’s

principle be a kind of logical deduction, it would never be able to predict an

adaptive change before it actually happens –what it could do would be, at most,

relating a past change to the selective and hereditary conditions. The deductive

outlook of evolutionary principles thus casts a serious doubt on the ampliative

nature and predictive ability of evolutionary theory.
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