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1 Introduction: Three Faces of Intuitionism

Intuitionism, a revisionary movement in the foundations of mathematics, holds

that mathematics and its objects must be humanly graspable. L. E. J. Brouwer

founded it in his 1907 dissertation. In the 112 intervening years it developed a

subtle and innovative mathematical face, established by Brouwer himself; a

formal logical face, decried by Brouwer, but championed by his students and

grand-students; and a philosophical face, initiated by Brouwer’s student Arend

Heyting and expanded by Michael Dummett.

This Element has pedagogical and philosophical goals. Pedagogically, I want

to show you enough of the mathematical and logical aspects of intuitionism for

you to see how subtle and interesting they are, and to enable you explore these

further. Philosophically, I’ll sketch a systematic philosophical grounding for

intuitionistic mathematical thought, the ‘intuitionistic standpoint’. I’ll derive it

from Brouwer’s work, but – pace Brouwer – I’ll use formal intuitionism to

make it precise. Current philosophical foundations for intuitionism are, I shall

say, at best a partial picture of this standpoint. I’ll use intuitionism‘s mathemat-

ical and logical faces to give a fuller picture.

1.1 The Mathematical Face of Intuitionism

The early twentieth century was a turbulent time for mathematics. On the one

hand the mathematical community was busy integrating the nineteenth cen-

tury’s revolutionary changes: non-Euclidean geometries (introducing abstract

spaces and structures lacking physical avatars), the new algebra (viewing those

abstract structures as mathematical objects in their own right), and Cantor’s set

theory (creating a consistent theory of infinite objects). This last was perhaps the

most sweeping. It closed the ancient rift between the discrete and the continuous

and it provided a common foundation for all of mathematics.

On the other hand, that very success raised problems. Mathematically, set

theory engendered paradoxes – Russell’s paradox is most famous –that tainted

everything built upon it. So in the first third of the twentieth century, mathemat-

icians worked mightily to rebuild set theory in a way that avoided those para-

doxes. But philosophically, even before the paradoxes, there were objections to

the infinitary set theoretic way of thinking. Cantor’s continuum, for instance, is

four layers deep in infinity; and set theory introduced higher and higher levels of

infinity. Finite human minds, the objectors declared, cannot grasp such things.

So the twentieth century saw a spate of proposals designed to provide a finite,

human grasp of mathematics while preserving the heart of modern mathematics.

‘Hilbert’s programme’ was one of these. Formalise infinitary theories, he said:

that is, axiomatise each theory in a regimented formal language and graft those
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axioms onto a system of logical axioms and rules expressed in the same formal

language. Those systems were to be finitely graspable; and examining their

proof structures would show them consistent and thus defuse paradoxes once

and for all. This study of formal systems – Hilbert initially called it ‘proof

theory’ and then ‘metamathematics’ – is the heart of contemporary mathemat-

ical logic, though it often loses Hilbert’s ‘finitary’ flavour.

Gödel’s incompleteness theorems scotched the technical side ofHilbert’s original

programme. But Brouwer objected to the programme on deeper grounds:

Mathematical assertions, for Brouwer, are never empty formulae. He went directly

to the offending mathematics, rebuilt it from the bottom up and strove to preserve

our human grasp of its objects at every step. That is his ‘intuitionistic mathematics’,

an innovative and rewarding enterprise. Brouwer developed it during his career, and

to some extent his students and grand-students carried on the project.

Three things characterise this intuitionistic mathematics. First, its objects

must be constructible; and its infinite objects – real numbers, functions over real

numbers, the continuum itself –must be constructible in a way that makes them

intuitively, finitely graspable. Second, it is alert from the very beginning to the

fact that this demand for finite grasp brings with it a degree of indeterminacy:

not only epistemic indeterminacy, but ontological indeterminacy as well. (There

are things about which the world, reality, is simply undetermined.) And third, it

deviates from standard (now called ‘classical’) set theory–based mathematics:1

it refrains from asserting some common classical theorems; it makes subtle

distinctions between classically equivalent notions; and it even proves theorems

that are classically simply false. Brouwer’s ‘uniform continuity theorem’ (every

total function on a closed interval is uniformly continuous) is most famous.2

Brouwer accompanied his development of intuitionistic mathematics with unre-

lenting polemics against classical mathematics and against Hilbert’s formalist

programme. Classical mathematics, he said, assumes determinacy where there

should be indeterminacy; introduces objects that in fact do not exist; and then builds

castles in the air based on those nonentities. And, contra formalism, Brouwer

rejected replacing intuitive thoughtwith bare syntax, and hemost stridently opposed

the formalist use of logic. He had particular animus towards what has come to be

called ‘classical logic’, the logic that Hilbert laid at the base of every formal system

(most notably its ‘law of the excluded middle’).3 That logic, he said, is a source for

1 Brouwer [1908A] introduced the term ‘classical mathematics’ as the foil for intuitionism.

Fraenkel [1923] picked up this usage and popularized it.
2 I’ll explain the terms in sub-sections 2.2.1 and 2.2.4.
3 Hilbert [1923] laid a basis for the formal logical system. Its full codification in Hilbert and

Ackermann [1928] is the locus classicus. The term “classical logic” as a foil for the logic of

intuitionism goes back to Wavre [1926].
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misplaced determinacy and existential excess. For Brouwer, purely logical manipu-

lation must never replace actual intuitive construction.

1.2 The Logical Face

Given Brouwer’s animus, one would hardly expect intuitionists to produce

formal systems for ‘intuitionistic logic’ and for branches of intuitionistic math-

ematics. Yet that is exactly what happened. Heyting [1930] and [1930A] contain

formal systems for intuitionistic logic and parts of intuitionistic mathematics,

and from the 1960s various formal systems for the intuitionistic theory of real

numbers and functions over real numbers appeared. All this despite – actually, I

will suggest, because of – Brouwer’s strident anti-formalism.

The 1920s and early 1930s witnessed internecine skirmishes between

Brouwer and Hilbert.4 The public issues were mathematical and logical:

Hilbert opposed any deviation from classical mathematics or from classical

logic; Brouwer opposed formalist foundations for mathematics. Hilbert won:

• He won mathematically: intuitionistic mathematics is barely practiced and

hardly taught today.

• He won logically: classical logic is still the logic of choice, and excluded

middle remains a powerful mathematical tool.

• He won metamathematically: the study of formal systems is a staple of

modern foundational studies. Indeed, even Heyting’s formal systems and

the subsequent formalisations of intuitionistic analysis underwent their own

metamathematical examinations, often using classical logic and applying

classical tools.5 Most modern students know only this about intuitionism.

1.3 Philosophy

Intuitionistic mathematics is rich and innovative and well worth studying on its

own. But, in fact, it rests on a subtle philosophy, a philosophy ultimately abetted

by formal intuitionism. Ironically, however, modern students seeking a philo-

sophical ground for what they do know of intuitionism – intuitionistic logic – find

Heyting’s ‘proof’ interpretation for the logical particles in formal languages; and

then they encounter Michael Dummett’s extension of Heyting’s conception to all

of language in general. Nowadays intuitionistic philosophy is all about linguistic

meaning and formal truth. How deeply un-Brouwerian!

4 van Dalen [2005] pp. 599–643 details the conflict.
5 Indeed, a Buffalo conference in 1968, shortly after Brouwer’s death, and its proceedings called

Intuitionism and Proof Theory (Kino, Myhill and Vesley [1970]) fully solidified the metamathe-

matical study of intuitionistic systems.
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I shall argue, however, that the philosophical ground of intuitionistic math-

ematics (and with it, intuitionistic logic) is a systematic union of phenomeno-

logical, epistemological and ontological doctrines, the ‘intuitionistic

standpoint’. I will extract these doctrines from the content and practice of

intuitionistic mathematics, from the notions of finite grasp and indeterminacy

that lie at its core. Moreover, I’ll show that the formalised intuitionism actually

clarifies those notions and even gives a platform to show the true semantic side

to intuitionism, a side far subtler than Heyting’s or Dummett’s partial pictures.

1.4 Preview

Section 2 starts with brief sketches of the relevant classical mathematical notions,

of Hilbert’s programme and of Brouwer’s objections. Then it introduces the core

of intuitionisticmathematics from the natural numbers through the basic theory of

real numbers and real valued functions (what we call ‘real analysis’). It includes

some detailed proofs exemplifying intuitionistic mathematical reasoning. (These

can be skipped without losing the gist of the story.) Then it offers a careful

account of the ‘fan theorem’, the main result from which the uniform continuity

theorem follows. It shows that Brouwer pulled off an historic mathematical coup

about the structure of the continuum.

Section 3 sketches two distinct programmes formalising aspects of intuition-

ism: first, Heyting’s formal systems for intuitionistic logic and for intuitionistic

number theory together with a taste of its metamathematics. Second, the central

formal systems of intuitionistic analysis together with a main meta-theorem

concerning these systems. It emphasises how these systems for analysis gener-

alise the ideas underlying the proof of the fan theorem. It concludes with brief

comparisons to two classical mixes of constructivity and analysis.

Building on all this, Section 4 broadly outlines the intuitionistic standpoint. I

derive the aspects concerning experience and knowledge and those concerning

objects from intuitionistic mathematics and from the main parts of formalised

intuitionistic analysis. I will also use formal intuitionistic logic to present the

more nuanced semantic view that emerges from Brouwer’s thought. In the end I

will trace the theme of ‘finite grasp’ through all aspects of intuitionism and point

out the nuanced intuitionistic conception of indeterminacy – both epistemic and

ontological indeterminacy.

To present this picture of mathematical intuitionism, I have selected core

topics that give a coherent picture and prepare the reader for further study. A

brief ‘Afterword’ lists important further topics.

This Element aims for readers with a background in logic and philosophy, and it

assumes some familiarity with logical notions and notation. Here’s a brief lexicon:

4 Elements in the Philosophy of Mathematics

www.cambridge.org/9781108723022
www.cambridge.org


Cambridge University Press
978-1-108-72302-2 — Mathematical Intuitionism
Carl J. Posy 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Expression Meaning

p∧ q p and q

p _ q p or q

p→ q if p then q

p↔ q p if and only if (iff)q

ep p is strongly false (a special meaning introduced in Section 2)

9xPx there is at least one x such that Px holds

8xPx every object x is such that Px holds of it6

x1; . . . ; xn; . . .gf the collection of objects x1; . . . ; xn; . . .
7

∅ the empty set

ojA oð Þgf the collection of all objects o such that A oð Þ holds

xngn
�

the sequence x1; x2; . . .

‘SA A is derivable in formal system S

Γ‘SA A is derivable from premise set Γ in formal system S

• n;m; k; n1; . . . ;m1 . . . ; k1; . . . range over natural numbers

• a; b; a1; . . . ; b1; . . . range over rational numbers

• r; r1; . . . range over real numbers

• α; β; γ; α1 . . . ; β1 . . . ; γ1; . . . range over sequences

• f ; g; h; f1; . . . ; g1; . . . ; h1; . . . range over functions

Section 2 uses these symbols informally. Section 3 uses them both informally

and in formal languages. The context will make the usage clear.8

2 The Mathematical Face of Intuitionism

2.1 Classical Foil and Formalist Foe

I’ll build the Cantorian continuum starting from the natural numbers (the set

ℕ ¼ 0; 1; 2; . . .gf ). Then I’ll mention the mathematical and conceptual prob-

lems that this raises, briefly show howHilbert’s programme addresses both, and

describe Brouwer’s grounds for rejecting this solution.

2.1.1 The Cantorian Continuum

Natural Numbers

We can distinguish natural numbers from one another and can do arithmetic

with them. This already allows us to order them: We say n<ℕm if

6 These last three are often restricted to some particular domain of objects.
7 Following Brouwer, I’ll generally take sequences to begin with x1.
8 When speaking informally, I’ll use ) and ⇔ rather than → and ↔.
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9 k 6¼0 mþ kð Þ ¼ n: ð2:1Þ

We assume that the principle of mathematical induction holds: for any property

A of natural numbers if A holds of 0 and if A is preserved when we add 1, then A

holds of all the natural numbers. Formally:

½A 0ð Þ∧8nðA nð Þ→A nþ 1ð ÞÞ� → 8nA nð Þ: ð2:2Þ

This in turn allows us to prove such general features as commutativity of

addition and multiplication

8n8m nþ m ¼ mþ nð Þ; ð2:3Þ

8n8m n � m ¼ m � nð Þ; ð2:4Þ

and the general least-number principle:

9xA xð Þ→9xðA xð Þ∧8k<xeA kð ÞÞ: ð2:5Þ

Integers and Rationals

ℕ extends naturally to the set ℤ of the integers (adding the negative numbers to

ℕ) with its usual arithmetic and ordering. And that in turn extends naturally to

the fractions: pairs n
d
where n and d are integers, and d 6¼ 0. Given fractions n

d
and

n0

d0
, we say that n

d
< n0

d0
when n � d0 <ℤ n0 � d; and that n

d
= n0

d0
when n � d0 ¼ℤ n0 � d.

That equality is an equivalence relation – it is reflexive, symmetric and transi-

tive – so it produces disjoint equivalence classes.

A rational number is one of these equivalence classes; ℚ is the set of all

rational numbers. Arithmetic operations, identity r1 = ℚr2, and order r1 < ℚr2 on

rational numbers work with representative fractions. These operations and

relations are independent of the particular fractions we use in order to represent

the rational numbers.

ℝ and its Fine Structure

A sequence α ¼ angn
�

of rational numbers is convergent when its elements get

closer and closer to one another: as the sequence progresses, the distance between

elements gets smaller than any given small number. For convenience we take the

small numbers to be reciprocals of powers of 2. So formally this comes to

8k2ℕ 9 n2ℕ8m2ℕðjan � anþmj<ℚ 2�kÞ: ð2:6Þ
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(jcj is the absolute value of c.9) Two such sequences, α ¼ angn
�

and β ¼ bngn
�

,

coincide (we write α ’ β) when their respective elements get closer and closer:

8k9n8mðjanþm � bnþmj<ℚ 2
�kÞ: ð2:7Þ

Thus, for example, the familiar decimal expansions are just sequences,

xn � 10
�ngn

�
, where every x is an integer, and which satisfy

jxn � 10
�n � xnþ1 � 10

� nþ1ð Þj ≤ ℚ 10
� nþ1ð Þ: ð2:8Þ

A real number, r, is an equivalence class of coincident convergent sequences.

We define

rα¼df βjα ’ βgf ð2:9Þ

and say rα is generated by α.

Finally, ℝ is the set of real numbers. This is the one-dimensional continuum,

the ‘real line’.

We do arithmetic on real numbers by working with their generating

sequences. So if α ¼ angn
�

and β ¼ bngn
�

then

rα þ rβ ¼ an þ bngn
�

ð2:10Þ

and similarly for the other arithmetic operations. Once again, these operations

are independent of the sequences representing the real numbers.

Order

The real numbers are ordered in a natural way, and this too is expressed via

representing sequences. If α ¼ angn
�

and β ¼ bngn
�

, then rα is less than rβ (we

write rα<ℝrβ) if

9k2ℕ9n2ℕ8m2ℕð bnþm � anþmð Þ>ℚ 2�kÞ: ð2:11Þ

This too is representative-independent.

Topology

The study of ‘nearness’ belongs to topology. While it may be done very

abstractly, here, on the real line, we can use the natural ordering <ℝ to define

intervals, and use those to express a sort of proximity. If r1<ℝ r2, the open

interval r1; r2ð Þ is

9 jcj is c if c ≥ 0, and jcj is �c if c < 0.
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rjr1 <ℝ r<ℝ r2g:f ð2:12Þ

This is the set of real numbers between r1 and r2.
10 The closed interval ½r1; r2� is

r1; r2ð Þ plus its endpoints. That is:

rjr1 ≤ ℝ r ≤ ℝ r2g:f ð2:13Þ

ℚ andℝ both have the property that between any two distinct elements of either

one of those sets lies a third element from the same set. This is called every-

where density.

By contrast, ℚ and ℝ differ regarding what’s called the least upper bound

(LUB) property.ℝ has the property: If S ⊆ℝð Þ is bounded from above, that is, if

9x8y2 S y ≤ ℝ xð Þ; ð2:14Þ

then there is a real number r such that every open interval containing r also

contains an element of S. But ℚ, as we have defined it, does not have this

property. S ¼ a2ℚja
2 < 2g

�
is bounded above (by e.g. the rational number 3

2
),

but S has no LUB in ℚ.

Functions

If you think of a function as a correlation associating a unique value to each of

its arguments, then a real valued function f correlates real numbers to real

numbers. If the arguments come from a particular subset, A ⊆ℝð Þ, A is called

the domain of f .

A function f is continuous at a point x in its domain, if whenever an

argument y in the domain is close to x, the value f yð Þ will be close to f xð Þ.

More precisely, for any open interval around f xð Þ that we pick, we can find an

open interval around x, such that for any y within that interval around x, f yð Þ

will be in the chosen interval around f xð Þ. Formally,

8k2ℕ8y2A9n2ℕðjx� yj<ℝ2
�n
→j f xð Þ � f yð Þj<ℝ 2�kÞ: ð2:15Þ

We say that f is continuous on A if it is continuous at each x 2 A.

The Intermediate Value Theorem says that if f is continuous on ½r1; r2�, then

every real number between f r1ð Þ and f r2ð Þ is the value of the function for some

argument in ½r1; r2�. This captures the pictorial idea that a continuous function

has no gaps.

10 One can say that at every point in an open interval there is ‘room to move around’ in either

direction without leaving the interval.
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A special case isBolzano’s Theorem: If f is continuous on ½r1; r2�, f r1ð Þ > 0

and f r2ð Þ < 0, then there is an r3 2 r1; r2ð Þ such that f r3ð Þ ¼ 0 (r3 will be the

LUB of the set rjr 2 r1; r2ð Þ∧ f rð Þ<ℝ0gf ).

The real valued function f is uniformly continuous on A ⊆ℝð Þ, if

8k9n8x2A8y2A½ðjx� yj<ℝ2
�nÞ→ðj f xð Þ � f yð Þj<ℝ2

�kÞ�: ð2:16Þ

Here, unlike (2.15), the requisite n depends only on k and is independent of the

argument x. Thus, for instance, f xð Þ ¼ x2 is continuous on ℝ, but is not

uniformly continuous on ℝ. It grows too fast: pick any k, then for any n we

can always find a pair x; y inℝ, such that jx� yj<ℝ2
�n but jx2 � y2j>ℝ2

�k . On

the other hand, if we take any closed interval, ½a; b�, then f xð Þ ¼ x2 is uniformly

continuous on that interval, because it is limited in how fast it can grow within

the interval.

A central classical theorem is the Classical Uniform Continuity Theorem:

If f is continuous on a closed interval, then f is uniformly continuous on that

interval.

2.1.2 Consequences

Set theory provided a universal ontology for all of mathematics, and it intro-

duced a new universe of heretofore unthought-of mathematical objects.

Universal Ontology

Not only areℕ, ℤ,ℚ andℝ sets; not only are rational and real numbers sets; but

so too are the natural numbers, and, with them, the integers. We can, for

instance, let 0 ¼ ∅ ; 1 ¼ ∅ g; . . . ; n ¼ n� 1gff , and then define arithmetic

operations and order accordingly.

Similarly, pairs x; ygf , ordered pairs hx; yi and, in general, ordered n-tuples

x1; x2; . . . are sets. So too are relations. For instance: <ℝ is the set

< rα; rβ >jα ¼ fangn ∧ β ¼ fbngn ∧9k2ℕ9n2ℕ8m2ℕð bnþm � anmð Þ > 2�kÞ
n o

:

ð2:17Þ

Analogously, each of the order relations among elements ofℕ, of ℤ and of ℚ is a

set. Moreover, a function, f , is a set too, f ¼ hx; yij f xð Þ ¼ ygf . Continuity is just

a property of particular sets of this form. So it too is a set, the set of functions having

this property. Everything in mathematics – every object, every property, every

relation that we can define – is a set. And since sets are distinguished by their

elements and only by their elements, the only actual relation we have is ‘2’.
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Large Sets

Set theory gives a precise account of ‘size’ (cardinality), and this brings with it a

new universe of large sets.

Two sets, A and B, are equinumerous (A ≈B) if they are in 1� 1 correspond-

ence; that is,

9f ½8x2A9y2Bðf xð Þ ¼ yÞ∧ 8y2B9x2Aðf xð Þ ¼ yÞ∧ 8x8yðf xð Þ ¼ f yð Þ→ x ¼ yÞ �:

ð2:18Þ

If N ≈A we say that A is denumerably infinite (or denumerable), and we call

the correspondence f an enumeration of A.

ℚ is known to be denumerable, but Cantor showed that ℝ is not. (ℝ is non-

denumerable, or, as we say, ‘uncountable’). Informally: Let B ⊊ℝð Þ be the set of

real numbers with decimal expansions consisting only of 0’s and 1’s.11 Were B

denumerable, we could line up the natural numbers in a column and match each

with a decimal expansion of a real number in B, exhausting all of B. We could

then go down the second column, changing the n th digit of the decimal

expansion in the n th row (from 0 to 1 or 1 to 0). The result would be a decimal

expansion (and hence a real number) in B that is not on the list. Since B is

uncountable, so is ℝ.

We say thatℕ andℚ have the same cardinal number, itself a certain set –we

write ‖ℕ‖ ¼ ‖ℚ‖ and say that Cantor proved this cardinal number to be smaller

than the cardinal number of ℝ: ‖ℕ‖ < ‖ℝ‖.

The process goes further. Given a set, A, defineP Að Þ, A’s power set, as the set

of all subsets of A.

P Að Þ¼ df xjx⊆Ag:f ð2:19Þ

Cantor actually proved in general that ‖A‖ < ‖P Að Þ‖. This gives us a hierarchical

universe of larger and larger sets.

2.1.3 Conceptual Problems

Cantor’s naïve picture is inconsistent. Russell’s set R ¼ xjx =2 xgf shows

this, for both R 2 R and R =2R must hold. Mathematicians patched this by

carefully designed axioms, ultimately Zermelo-Fraenkel set theory (ZF). But

nonetheless two conceptual problems made this set theoretic picture untenable

for Brouwer.

11 Of course, these real numbers will have other representations as well.
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