Covering basic physical concepts, experimental methods, and applications, this book is an indispensable text on the fascinating science of magnetism, and an invaluable source of practical reference data.

Accessible, authoritative, and assuming undergraduate familiarity with vectors, electromagnetism and quantum mechanics, this textbook is well suited to graduate courses. Emphasis is placed on practical calculations and numerical magnitudes – from nanoscale to astronomical scale – focussing on modern applications, including permanent magnet structures and spin electronic devices.

Each self-contained chapter begins with a summary, and ends with exercises and further reading. The book is thoroughly illustrated with over 600 figures to help convey concepts and clearly explain ideas. Easily digestible tables and data sheets provide a wealth of useful information on magnetic properties. The 38 principal magnetic materials, and many more related compounds, are treated in detail.

J. M. D. Coey leads the Magnetism and Spin Electronics group at Trinity College, Dublin, where he is Erasmus Smith’s Professor of Natural and Experimental Philosophy. An authority on magnetism and its applications, he has been awarded the Gold Medal of the Royal Irish Academy and the Charles Chree Medal of the Institute of Physics for his work on magnetic materials.
Magnetism and Magnetic Materials

J. M. D. COEY
Trinity College, Dublin
Contents

List of tables of numerical data ix
Preface xi
Acknowledgements xiii

1 Introduction 1
1.1 A brief history of magnetism 1
1.2 Magnetism and hysteresis 7
1.3 Magnet applications 13
1.4 Magnetism, the felicitous science 19

2 Magnetostatics 24
2.1 The magnetic dipole moment 24
2.2 Magnetic fields 28
2.3 Maxwell’s equations 41
2.4 Magnetic field calculations 43
2.5 Magnetostatic energy and forces 50

3 Magnetism of electrons 62
3.1 Orbital and spin moments 63
3.2 Magnetic field effects 74
3.3 Theory of electronic magnetism 87
3.4 Magnetism of electrons in solids 92

4 Magnetism of localized electrons on the atom 97
4.1 The hydrogenic atom and angular momentum 97
4.2 The many-electron atom 100
4.3 Paramagnetism 106
4.4 Ions in solids; crystal-field interactions 114

5 Ferromagnetism and exchange 128
5.1 Mean field theory 129
5.2 Exchange interactions 135
5.3 Band magnetism 144
5.4 Collective excitations 161
Contents

5.5 Anisotropy 168
5.6 Ferromagnetic phenomena 174

6 Antiferromagnetism and other magnetic order 195
 6.1 Molecular field theory of antiferromagnetism 196
 6.2 Ferrimagnets 200
 6.3 Frustration 203
 6.4 Amorphous magnets 209
 6.5 Spin glasses 218
 6.6 Magnetic models 221

7 Micromagnetism, domains and hysteresis 231
 7.1 Micromagnetic energy 234
 7.2 Domain theory 239
 7.3 Reversal, pinning and nucleation 244

8 Nanoscale magnetism 264
 8.1 Characteristic length scales 265
 8.2 Thin films 267
 8.3 Thin-film heterostructures 274
 8.4 Wires and needles 293
 8.5 Small particles 295
 8.6 Bulk nanostructures 299

9 Magnetic resonance 305
 9.1 Electron paramagnetic resonance 307
 9.2 Ferromagnetic resonance 313
 9.3 Nuclear magnetic resonance 318
 9.4 Other methods 329

10 Experimental methods 333
 10.1 Materials growth 333
 10.2 Magnetic fields 340
 10.3 Atomic-scale magnetism 343
 10.4 Domain-scale measurements 353
 10.5 Bulk magnetization measurements 360
 10.6 Excitations 368
 10.7 Numerical methods 370

11 Magnetic materials 374
 11.1 Introduction 374
 11.2 Iron group metals and alloys 384
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>Rare-earth metals and intermetallic compounds</td>
<td>398</td>
</tr>
<tr>
<td>11.4</td>
<td>Interstitial compounds</td>
<td>407</td>
</tr>
<tr>
<td>11.5</td>
<td>Oxides with ferromagnetic interactions</td>
<td>410</td>
</tr>
<tr>
<td>11.6</td>
<td>Oxides with antiferromagnetic interactions</td>
<td>417</td>
</tr>
<tr>
<td>11.7</td>
<td>Miscellaneous materials</td>
<td>432</td>
</tr>
</tbody>
</table>

12 Applications of soft magnets | 439
- 12.1 Losses | 441
- 12.2 Soft magnetic materials | 448
- 12.3 Static applications | 453
- 12.4 Low-frequency applications | 454
- 12.5 High-frequency applications | 457

13 Applications of hard magnets | 464
- 13.1 Magnetic circuits | 466
- 13.2 Permanent magnet materials | 469
- 13.3 Static applications | 473
- 13.4 Dynamic applications with mechanical recoil | 481
- 13.5 Dynamic applications with active recoil | 485
- 13.6 Magnetic microsystems | 491

14 Spin electronics and magnetic recording | 494
- 14.1 Spin-polarized currents | 497
- 14.2 Materials for spin electronics | 515
- 14.3 Magnetic sensors | 516
- 14.4 Magnetic memory | 522
- 14.5 Other topics | 525
- 14.6 Magnetic recording | 530

15 Special topics | 542
- 15.1 Magnetic liquids | 543
- 15.2 Magnetoelectrochemistry | 547
- 15.3 Magnetic levitation | 549
- 15.4 Magnetism in biology and medicine | 555
- 15.5 Planetary and cosmic magnetism | 565

Appendices | 580
- Appendix A Notation | 580
- Appendix B Units and dimensions | 590
- Appendix C Vector and trigonometric relations | 595
- Appendix D Demagnetizing factors for ellipsoids of revolution | 596
Contents

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix E</td>
<td>Field, magnetization and susceptibility</td>
<td>597</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Quantum mechanical operators</td>
<td>598</td>
</tr>
<tr>
<td>Appendix G</td>
<td>Reduced magnetization of ferromagnets</td>
<td>598</td>
</tr>
<tr>
<td>Appendix H</td>
<td>Crystal field and anisotropy</td>
<td>599</td>
</tr>
<tr>
<td>Appendix I</td>
<td>Magnetic point groups</td>
<td>600</td>
</tr>
</tbody>
</table>

Formula index 601

Index 604
List of tables of numerical data

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit conversions</td>
<td>rear endpaper</td>
</tr>
<tr>
<td>Physical constants</td>
<td>rear endpaper</td>
</tr>
<tr>
<td>The magnetic periodic table</td>
<td>front endpaper</td>
</tr>
<tr>
<td>Demagnetizing factors</td>
<td>596</td>
</tr>
<tr>
<td>Diamagnetic susceptibilities of ion cores</td>
<td>76</td>
</tr>
<tr>
<td>Properties of the free-electron gas</td>
<td>79</td>
</tr>
<tr>
<td>Susceptibilities of diamagnetic and paramagnetic materials</td>
<td>87</td>
</tr>
<tr>
<td>Spin-orbit coupling constants</td>
<td>105</td>
</tr>
<tr>
<td>Properties of 4f ions</td>
<td>114,125</td>
</tr>
<tr>
<td>Properties of 3d ions</td>
<td>115</td>
</tr>
<tr>
<td>Susceptibility of metals</td>
<td>134</td>
</tr>
<tr>
<td>Kondo temperatures</td>
<td>146</td>
</tr>
<tr>
<td>Intrinsic magnetic properties of Fe, Co, Ni</td>
<td>150</td>
</tr>
<tr>
<td>Energy contributions in a ferromagnet</td>
<td>179</td>
</tr>
<tr>
<td>Faraday and Kerr rotation</td>
<td>190,191</td>
</tr>
<tr>
<td>Reduced magnetization; Brillouin theory</td>
<td>598</td>
</tr>
<tr>
<td>Model critical exponents</td>
<td>224</td>
</tr>
<tr>
<td>Domain wall parameters for ferromagnets</td>
<td>242</td>
</tr>
<tr>
<td>Micromagnetic length scales for ferromagnets</td>
<td>266</td>
</tr>
<tr>
<td>Antiferromagnets for exchange bias</td>
<td>278</td>
</tr>
<tr>
<td>g-factors for ferromagnets</td>
<td>314</td>
</tr>
<tr>
<td>Magnetism of elementary particles</td>
<td>319</td>
</tr>
<tr>
<td>Nuclei for NMR</td>
<td>320</td>
</tr>
<tr>
<td>Nuclei for Mössbauer effect</td>
<td>330</td>
</tr>
<tr>
<td>Nuclear and magnetic scattering lengths for neutrons</td>
<td>347</td>
</tr>
<tr>
<td>Properties of selected magnetic materials</td>
<td>375</td>
</tr>
<tr>
<td>Magnetic parameters of useful magnetic materials</td>
<td>377</td>
</tr>
<tr>
<td>Metallic radii of elements</td>
<td>379</td>
</tr>
<tr>
<td>Ionic radii of ions</td>
<td>380</td>
</tr>
<tr>
<td>Soft materials for low-frequency applications</td>
<td>450</td>
</tr>
<tr>
<td>Soft materials for high-frequency applications</td>
<td>452</td>
</tr>
<tr>
<td>Properties of permanent magnets</td>
<td>471,473</td>
</tr>
<tr>
<td>Mean free paths and spin diffusion lengths</td>
<td>499</td>
</tr>
<tr>
<td>Properties of materials used for spin electronics</td>
<td>516</td>
</tr>
<tr>
<td>Properties of commercial ferrofluids and microbeads</td>
<td>547</td>
</tr>
</tbody>
</table>
This book offers a broad introduction to magnetism and its applications, designed for graduate students and advanced undergraduates as well as practising scientists and engineers. The approach is descriptive and quantitative, treating concepts, phenomena, materials and devices in a way that emphasises numerical magnitudes, and provides a wealth of useful data.

Magnetism is a venerable subject, which underwent four revolutionary changes in the course of the twentieth century – understanding of the physics, extension to high frequencies, the avalanche of consumer applications and, most recently, the emergence of spin electronics. The reader probably owns one or two hundred magnets, or some billions if you have a computer where each bit on the hard disc counts as an individually addressable magnet. Sixty years ago, the number would have been at best two or three. Magnetics, in partnership with semiconductors, has created the information revolution, which in turn has given birth to new ways to research the subject – numerical simulation of physical theory, automatic data acquisition and web-based literature searches.

The text is structured in five parts. First, there is a short overview of the field. Then come eight chapters devoted to concepts and principles. Two parts follow which treat experimental methods and materials, respectively. Finally there are four chapters on applications. An elementary knowledge of electromagnetism and quantum mechanics is needed for the second part. Each chapter ends with a short bibliography of secondary literature, and some exercises. SI units are used throughout, to avoid confusion and promote magnetic numeracy. A detailed conversion table for cgs units, which are still in widespread use, is provided inside the back cover. There is some attempt to place the study of magnetism in a global context; our activity is not only intellectual and practical, it is also social and economic.

The text has grown out of courses given to undergraduates, postgraduates and engineers over the past 15 years in Dublin, San Diego, Tallahassee, Strasbourg and Seagate, as well as from the activities of our own research group at Trinity College, Dublin. I am very grateful to many students, past and present, who contributed to the venture, as well as to numerous colleagues who took the trouble to read a chapter and let me have their criticism and advice, and correct at least some of the mistakes. I should mention particularly Sara McMurry, Plamen Stamenov and Munuswamy Venkatesan, as well as Grainne Costigan, Graham Green, Ma Qinli and Chen Junyang, who all...
worked on the figures, and Emer Brady who helped me get the whole text into shape.

Outlines of the solutions to the odd-numbered exercises are available at the Cambridge website www.cambridge.org/9780521816144. Comments, corrections and suggestions for improvements of the text are very welcome; please post them at www.tcd.ie/physics/magnetism/coeybook.php.

Finally, I am grateful to Wong May, thinking of everything we missed doing together when I was too busy with this.

J. M. D. Coey
Dublin, November 2009
Acknowledgements

The following figures are reproduced with permission from the publishers:

American Association for the Advancement of Science: 14.18, p.525 (margin), p.537 (margin), 14.27; American Institute of Physics: 5.25, 5.31, 6.18, 8.5, 8.33, 10.12, 11.8; American Physical Society: 4.9, 5.35, 5.40, 6.27a, 6.27b, 8.3, 8.8, 8.9, 8.15, 8.17, 8.18, 8.21, 8.22, 8.26, 8.29, 9.5, p.360 (margin), 11.15, 14.16; American Geophysical Union p.572 (margin); United States Geological Survey Geomagnetism Program: 15.18, p.572 (margin); American Society for Metals: 5.35; Cambridge University Press: 4.15, 4.17, 7.8, 7.18, 9.12, 10.16, p.573 (margin); Elsevier: 6.23, 8.2, 8.4, 11.22, 14.22, 14.23, 14.26, 15.22; Institute of Electrical and Electronics Engineers: 5.32, 8.31, 8.34, 8.35, 9.6, 11.6, 11.7; MacMillan Publishers: 14.17, 15.4c; Oxford University Press: 5.26; National Academy of Sciences: 15.1; Springer Verlag: 4.18, 14.13, 14.21, 15.8, 15.21; Taylor and Francis: 1.6, 2.8b, 10.2; Institution of Engineering and Technology: 11.20; University of Chicago Press: 1.1a; John Wiley: 5.21, 6.4, 6.15, 8.11a,b, 9.9, 12.10

Fermi surfaces are reproduced with kind permission of the University of Florida, Department of Physics, http://www.phys.ufl.edu/fermisurface.

Thanks are due to Wiebke Drenckhan and Orphee Cugat for permission to reproduce the cartoons on pages 161 and 531.

Figure 15.3 is reproduced by courtesy of Johannes Kluehspiess. Figure 15.5 is reproduced by courtesy of L. Nelemans, High Field Magnet Laboratory, Nijmegen. Figure 15.5 is reproduced by permission of Y. I. Wang, Figure 15.17 is reproduced by courtesy of N. Sadato; Figure 15.23 is reproduced by courtesy of P. Rochette.