

Fundamentals of Geophysics Third Edition

This enduringly popular undergraduate textbook has been thoroughly reworked and updated, and now comprises twelve chapters covering the same breadth of topics as earlier editions, but in a substantially modernized fashion to facilitate classroom teaching.

Covering both theoretical and applied aspects of geophysics, clear explanations of the physical principles are blended with step-by-step derivations of the key equations and over 400 explanatory figures to explain the internal structure and properties of the planet, including its petroleum and mineral resources. New topics include the latest data acquisition technologies, such as satellite geophysics, planetary landers, ocean-bottom seismometers, and fiber optic methods, as well as recent research developments in ambient noise interferometry, seismic hazard analysis, rheology, and numerical modeling – all illustrated with examples from the scientific literature.

Student-friendly features include separate text boxes with auxiliary explanations and advanced topics of interest; reading lists of foundational, alternative, or more detailed resources; end-of-chapter review questions; and an increased number of quantitative exercises. Completely new to this edition is the addition of computational exercises in Python, designed to help students acquire important programming skills and develop a more profound understanding of geophysics.

WILLIAM LOWRIE is Professor Emeritus of Geophysics at the Institute of Geophysics at ETH Zürich, Switzerland, where he taught geophysics and carried out research in rock magnetism and paleomagnetism. He graduated from the University of Edinburgh in 1960 with first class honors in physics, before completing a master's degree in geophysics at the University of Toronto and a doctorate at the University of Pittsburgh. He has been President of the European Union of Geosciences (1987–1989) and Section President and a council member of the American Geophysical Union (2000–2002). He is a fellow of AGU and a member of the Academia Europaea.

ANDREAS FICHTNER is Professor of Geophysics at ETH Zürich. He received his PhD in 2010 from the University of Munich. His principal research interests include the development and application of methods for full seismic waveform inversion, resolution analysis in tomography, earthquake source inversion, seismic interferometry, and inverse theory. For his work, he received the Keiiti Aki Award from the American Geophysical Union, the Early Career Scientist Award from the International Union of Geodesy and Geophysics, and the Hoffmann Prize from the Bavarian Academy of Sciences. He is a former Fulbright scholar and a current member of the Young Academy of Europe.

Fundamentals of Geophysics

Third Edition

WILLIAM LOWRIE

Swiss Federal Institute of Technology Zürich

ANDREAS FICHTNER

Swiss Federal Institute of Technology Zürich

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108716970

DOI: 10.1017/9781108685917

First edition © Cambridge University Press & Assessment 1997

Second edition © W. Lowrie 2007

Third edition © Cambridge University Press & Assessment 2020

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 1997 Second edition 2007 9th printing 2017 Third edition 2020

 $A\ catalogue\ record\ for\ this\ publication\ is\ available\ from\ the\ British\ Library$

ISBN 978-1-108-49273-7 Hardback ISBN 978-1-108-71697-0 Paperback

 $Additional\ resources\ for\ this\ publication\ at\ www.cambridge.org/FoG3e.$

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

This book is dedicated to Marcia and Carolin

Contents

Preface		<i>page</i> ix	4	Gravity Surveying	87
				Preview	87
1	The Solar System	1	4.1	Gravity Measurement and Reduction	87
	Preview	1	4.2	Interpretation of Gravity Anomalies	101
1.1	The Planets	1	4.3	Isostasy	118
1.2	The Discovery of the Planets and		4.4	Suggestions for Further Reading	123
	Determination of Their Orbits	5	4.5	Review Questions	123
1.3	Kepler's Laws of Planetary Motion	7	4.6	Exercises	124
1.4	Characteristics of the Planets and Their Orbit	ts 7	4.7	Computational Exercises	124
1.5	The Inner (Terrestrial) Planets and the Moon	10			
1.6	The Outer (Giant) Planets	15	5	Rheology of the Earth	125
1.7	The Outer Solar System: Trans-Neptunian			Preview	125
	Objects	17	5.1	Elastic Deformation	125
1.8	Suggestions for Further Reading	19	5.2	Viscous Flow	132
1.9	Review Questions	19	5.3	Deviations from Perfect Elasticity and Viscous	
1.10	Exercises	20		Flow	134
			5.4	Lithosphere Rigidity	137
2	Plate Tectonics	21	5.5	Mantle Viscosity	140
	Preview	21	5.6	Suggestions for Further Reading	144
2.1	Historical Introduction	21	5.7	Review Questions	144
2.2	Continental Drift	22	5.8	Exercises	144
2.3	Earth Structure	24	5.9	Computational Exercises	145
2.4	Types of Plate Margin	26			
2.5	Sea-Floor Spreading	28	6	Seismology	146
2.6	Plate Margin Features	31		Preview	146
2.7	Triple Junctions	35	6.1	Introduction	146
2.8	Hotspots	38	6.2	Seismic Waves	147
2.9	Plate Motion on the Surface of a Sphere	41	6.3	Seismic Waves in the Heterogeneous	
2.10	Forces Driving Plate Tectonic Motions	43		Earth	159
2.11	Suggestions for Further Reading	45	6.4	Ambient Seismic Waves	176
2.12	Review Questions	45	6.5	Seismometry	180
2.13	Exercises	47	6.6	Suggestions for Further Reading	187
2.14	Computational Exercises	47	6.7	Review Questions	187
_			6.8	Exercises	188
3	Gravity and the Figure of the Earth	48	6.9	Computational Exercises	190
	Preview	48	_		
3.1	The Earth's Size and Shape	48	7	Earthquakes and the Earth's Internal	
3.2	Gravitation	50		Structure	191
3.3	The Earth's Rotation	54		Preview	191
3.4	The Earth's Figure and Gravity	68	7.1	Introduction	191
3.5	Space Geodesy	76	7.2	Earthquake Seismology	191
3.6	Suggestions for Further Reading	84	7.3	Earthquakes and Human Society	209
3.7	Review Questions	84	7.4	Internal Structure of the Earth	217
3.8	Exercises	85	7.5	Suggestions for Further Reading	233
3.9	Computational Exercises	86	7.6	Review Questions	233

vii

viii	Contents					
7.7	Exercises	233	10.5	Resistivity Surveying	296	
7.8	Computational Exercises	234		Electromagnetic Surveying	304	
	1			Electrical Conductivity in the Earth	314	
8	Geochronology	235		Suggestions for Further Reading	315	
	Preview	235		Review Questions	315	
8.1	Time	235		Exercises	316	
8.2	Historical Estimates of the Earth's Age	237	10.11	Computational Exercises	316	
8.3	Radioactivity	239		•		
8.4	Radiometric Age Determination	242	11	The Earth's Magnetic Field	317	
8.5	Ages of the Earth and the Solar System	249		Preview	317	
8.6	Suggestions for Further Reading	251	11.1	Magnetism	317	
8.7	Review Questions	251	11.2	Geomagnetism	319	
8.8	Exercises	251	11.3	Magnetic Fields of the Sun, Moon, and Planets	334	
8.9	Computational Exercises	252	11.4	Magnetic Surveying	340	
			11.5	Suggestions for Further Reading	354	
9	The Earth's Heat	253	11.6	Review Questions	354	
	Preview	253	11.7	Exercises	354	
9.1	Introduction	253	11.8	Computational Exercises	355	
9.2	Thermodynamic Principles	253				
9.3	Temperature Inside the Earth	255	12	Paleomagnetism	356	
9.4	Heat Transport in the Earth	257		Preview	356	
9.5	Sources of Heat in the Earth	260		Rock Magnetism	356	
9.6	The Heat Conduction Equation	262	12.2	Apparent Polar Wander and Tectonics	368	
9.7	Continental Heat Flow	267		Geomagnetic Polarity	383	
9.8	Oceanic Heat Flow	271		Suggestions for Further Reading	392	
9.9	Mantle Convection	280	12.5	Review Questions	392	
9.10	Suggestions for Further Reading	286	12.6	Exercises	392	
9.11	Review Questions	286	12.7	Computational Exercises	393	
9.12	Exercises	287				
9.13	Computational Exercises	287	Appe	Appendices		
			A	The Three-Dimensional Wave Equation	394	
10	Geoelectricity	288	В	Cooling of a Semi-Infinite Half-Space	397	
	Preview	288	C	Magnetic Behavior of Rock-Forming Minerals	399	
10.1	Introduction	288	D	Magnetic Anisotropy	402	
	Electrical Principles	288	Bibliography		405	
10.3	Electrical Properties of the Earth	292				
10.4	Natural Potentials and Currents	293	Index		411	

Preface

Widespread access to powerful computers, advances in instrumentation, and the expansion of remote sensing of properties of the Earth and some other planets from space missions have resulted in considerable advancements in many fields of geophysics in the years since the second edition of this book was published. During this time the continual spread of internet-related education has made online availability of teaching materials increasingly desirable. These developments encouraged us to prepare this third edition of *Fundamentals of Geophysics*, and to provide interactive involvement for students in solving problems online in the form of Jupyter Notebooks.

For this edition, William Lowrie, the author of the earlier editions, has been joined by Andreas Fichtner. Both authors are professors of geophysics at the Swiss Federal Institute of Technology (ETH Zürich), with different fields of specialization. The collaboration adds expertise and a fresher approach to the different disciplines covered in the book.

Geophysics is often taught as two topics, with titles like "general" and "applied." In fact these are two sides of the same coin, and they often benefit from advances in instrumentation and analysis developed in each other's domain. As in the earlier editions, we therefore continue to describe the principal methods in both fields.

It is not possible to explain briefly every recent advancement in an introductory textbook, but we have included some of the most striking. These include the geophysical results from space missions to other bodies in the solar system (e.g., Mercury, Mars, Jupiter, and Pluto). There has been great progress in remotely sensing the gravitational and magnetic fields of our own planet from orbiting satellites. A new section is added to deal with space geodesy, in which we explain some of the developments that have revolutionized research in geodesy and gravity. New seismic methods for understanding the Earth's internal structure are described, for example by analyzing ambient noise. The danger presented by earthquakes can be estimated by probabilistic seismic hazard. Advancements in seismic tomography and the numerical modeling of geophysical processes (e.g., mantle dynamics) have illuminated – and posed new

questions about – our understanding of the Earth's interior. Text boxes are used to handle some topics in greater detail than is needed in the body of the text, which, as in the earlier editions, emphasizes fundamental principles in the individual disciplines.

The new structure of the book divides the field of geophysics into 12 chapters, with a little overlap between some of them. In order to keep the price to students as low as possible, the authors decided to continue to use black-and-white figures, avoiding the use of more expensive color. However, as the book's title claims, its emphasis is on teaching the fundamental principles and these (mostly) do not change. If necessary, the teacher is in a position to enlarge upon the illustrations with colored examples, of which there is abundant choice in the professional literature. The website provides the solutions to the exercises at the end of each chapter for teachers who want to use them.

In preparing this edition we have received contributed figures, voluntary reviews, and constructive suggestions from a large number of colleagues. We are very grateful for their generous support. If we have not accepted suggestions, it was usually not because we disagreed, but rather because of our personal preferences. In particular we wish to thank Michael Afanasiev, Peter Annan, Nienke Blom, Jim Channell, Rob Coe, Laurentiu Danciu, Rhodri Davies, Sjoerd de Ridder, Jordi Diaz, Laura Ermert, Chris Finlay, Alexandre Fournier, Domenico Giardini, Alan Green, James Harris, Ann Hirt, Ian Jackson, Dennis Kent, Paula Koelemeijer, Maria Koroni, Kostas Lentas, Guust Nolet, Markku Poutanen, and Andrew Schaeffer.

In addition, the book has benefited from the suggestions of anonymous reviewers of each chapter. We appreciate the time and effort they made to improve our book, surely at the expense of their involvement in other research or academic work, and thank them sincerely for their help.

Finally, we thank our wives, Marcia Lowrie and Carolin Fichtner, for their understanding and encouragement. This book is dedicated to them.