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�e rapid growth of science and technology during the last few decades has made a tremendous 
change to the nature of various mathematical problems. It is not easy to solve these new problems 
for analytical solutions by conventional methods. In fact, the study of these mathematical 
problems for analytical solutions is not only regarded as a di�cult endeavor, rather it is almost 
impossible to get analytical solutions in many cases. �e tools for analysis and for obtaining 
the analytical solutions of complex and nonlinear mathematical systems are limited to very 
few special categories. Due to this reason, when confronted with such complex problems we 
usually simplify them by invoking certain restrictions on the problem and then solve it. But 
these solutions, however, fail to render much needed information about the system. �ese 
shortcomings of analytical solutions lead us to seek alternates, and various numerical techniques 
developed for di�erent types of mathematical problems seem to be excellent options. During 
the last century, the numerical techniques have witnessed a veritable explosion in research, both 
in their application to complex mathematical systems and in the very development of these 
techniques. At many places in this book, we will compare numerical techniques with analytical 
techniques, and point out various problems which can not be solved through analytical 
techniques, and to which numerical techniques provide quite good approximate solutions.

Many researchers are using numerical techniques to investigate research problems. 
Numerical techniques are now widely used in a lot of engineering and science �elds. Almost 
all universities now o�er courses on introductory and advanced computer-oriented numerical 
methods to their engineering and science students, keeping in mind the utilization merits of 
these techniques. In addition, computer-oriented problems are part of various other courses of 
engineering/technology. 

Preface

There is no branch of mathematics, however abstract, which may not some day be 

applied to phenomena of the real world. 

Nikolai Ivanovich Lobachevsky 

(December 1, 1792–February 24, 1856)

His work is mainly on hyperbolic geometry, also known as Lobachevskian geometry.
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xviii Preface

It gives me immense pleasure in presenting the book to our esteemed readers. �is book is 
written keeping several goals in mind. It provides essential information on various numerical 
techniques to the students from various engineering and science streams. �e aim of the book 
is to make the subject easy to understand, and to provide in-depth knowledge about various 
numerical tools in a simple and concise manner. 

Students learn best when the course is problem-solution oriented, especially when studying 
mathematics and computing. �is book contains many examples for almost all numerical 
techniques designed from a problem-solving perspective. In fact, theoretical and practical 
introductions to numerical techniques and worked examples make this book student-friendly. 

While the main emphasis is on problem-solving, su�cient theory and examples are also 
included in this book to help students understand the basic concepts. �e book includes 
theories related to errors and convergence, limitations of various methods, comparison of 
various methods for solving a speci�c type of problem and scope for further improvements, etc. 

�e practical knowledge of any subject is thought to be an essential part of the curriculum 
for an engineering student. Numerical methods require tedious and repetitive arithmetic 
operations, wherein for large-scale problems it is almost impossible to do such cumbersome 
arithmetic operations manually. Fortunately most numerical techniques are algorithmic in 
nature, so it is easy to implement them with the aid of a computer. To enrich problem-solving 
capabilities, we have presented the basic C-programs for a wide range of methods to solve 
algebraic and transcendental equations, linear and nonlinear systems of equations, eigenvalue 
problems, interpolation problems, curve �tting and splines, numerical integration, initial and 
boundary value problems, etc. 

�e section below provides an overview of the contents of the book. Each chapter contains 
a brief introduction and it also emphasis the need for numerical techniques for solving speci�c 
problems. We have provided exercises in all chapters with the aim of helping students check 
their capabilities and understanding, and also illustrate how various numerical methods are the 
better problem solvers. 

Chapter-by-chapter Introduction to the Book

�e book comprises sixteen chapters.

Chapter 1: Number Systems explains integral and fractional numbers in the binary, octal, decimal 
and hexadecimal number systems. It also includes the conversion from one number system to 
another number system. 

Chapter 2: Error Analysis primarily presents various types of errors, and some standard remedies 
to trace and reduce these errors. 

Except Chapters 1 and 2, all other chapters of this book have been devoted to numerical 
techniques which are used to solve some speci�c type of problems. In each chapter, various 
numerical methods will be introduced to solve these problems. 

Chapter 3: Nonlinear Equations consists of various techniques to solve nonlinear equations in 
single variable. Primary aim is to determine the value of variable or parameter x, called root of 
the equation that satis�es the equation 

f x( ) = 0
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Preface xix

Roots of simple equations like quadratic equation x x2 3 2 0− + =  can be obtained easily. But 
in the case of higher order polynomial equations like 3 3 2 3 9 05 4 3 2x x x x x+ + − − + =  and 
transcendental equations viz. 2 0e x xx cos ,− =  we do not have any general method to compute 
the roots of these equations. Numerical techniques will be helpful for computing roots of such 
equations. 

Root
x

y = f(x)

f(x)

Fig. 1 Root of f x( ) = 0

1

1 32

2

3

4

5

y

y = x2 − 3x + 2

x

Fig. 2 Roots of x2 – 3x + 2 = 0

�ese problems are especially valuable in engineering design contexts where due to the 
complexity of the design equations it is o�en impossible to solve these equations with analytical 
methods. 

Chapter 4: Nonlinear Systems and Polynomial Equations deals with the numerical techniques to 

solve the systems of nonlinear equations, say, the system of two equations 
f x y

g x y

( , )

( , )

=

=

0

0
.

Root
x

f(x, y)

y

g(x, y)

Fig. 3 Solution of 
f x y

g x y

( , )

( , )

=

=

0

0

5

10

15

20

25

–4 –2 0 2 4x

Fig. 4 Roots of 
y x

x x y

− =

+ − − =

sin( ) 0

2 0
2
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xx Preface

�e aim is to �nd coordinate (x, y), which satis�es these two equations simultaneously. Since 
there is no general analytical method for the solution of such systems of nonlinear equations, 
therefore we will apply numerical methods to solve such kind of problems. �is chapter also 
includes some numerical methods for the roots of polynomial equations. 

Chapter 5: Systems of Linear Equations is devoted to obtain solution of the system of linear 
algebraic equations

a x a x a x b

a x a x a x b

a x a

n n

n n

n n

11 1 12 2 1 1

21 1 22 2 2 2

1 1

+ + + =

+ + + =

+

...

...




22 2x a x bnn n n+ + =...

  e.g.,  

x x x

x x x

x x x

1 2 3

1 2 3

1 2 3

2 3 15

2 3 15

3 9

− + =

− + =

+ − = −

 with n = 3.

In case of system of two algebraic equations, we have two lines, and their point of intersection 
is the solution. 

1

1

2

3

2

(1, 2)

x

y

y

3–1

–1

–2

–3

x+2*y = 5

3*x–y = 1

0

Fig. 5 Linear system in two variables (x, y)

Such equations have many important applications in science and engineering, speci�cally in the 
mathematical modeling of large systems of interconnected elements such as electrical circuits, 
structures, lattice and �uid networks, etc. In this chapter, we will discuss various direct and 
iterative methods to solve these systems of linear equations. Also, we will discuss problems that 
arise in applying these methods on the computer and some remedies for these problems.

Chapter 6: Eigenvalues and Eigenvectors is to deduce eigenvalues and eigenvectors for a square 
matrix A. A column vector X is an eigenvector corresponding to eigenvalue λ of a square matrix 
A, if 

AX X= λ .   (or) A X−( ) =λI 0

�e nontrivial solutions of this homogeneous system exist, only if 

p A( ) detλ λ= −( ) =I 0
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Preface xxi

�ese types of problems arise in di�erent streams of science and engineering especially in the 
case of oscillatory systems like elasticity, vibrations, etc.

Chapter 7: Eigenvalues and Eigenvectors of Real Symmetric Matrices deals with the eigenvalues 
and eigenvectors of real symmetric matrices. Some methods are applicable only to real 
symmetric matrices. Since these methods are easy to implement and provide all the eigenvalues 
and eigenvectors at a time, hence need more exploration. 

Chapter 8: Interpolation is most important part of numerical methods, as it deals with the 
approximation of the data sets with the polynomials. �is chapter deals with the task of 
constructing a polynomial function P(x) of minimum degree, which passes through a given 
set of discrete data points ( , ), , , ...,x y i ni i = 0 1 . �is polynomial is known as interpolating 
polynomial. It estimates the value of the dependent variable y for any intermediate value of the 
independent variable, x.

p(λ) is the polynomial of degree n for a square matrix of order n. �ere are only n eigenvalues of 
matrix A, including repetitions (eigenvalues may be complex). �e polynomial p(λ) is known as 
characteristic polynomial, and the equation p(λ) = 0 is called characteristic equation. 

For example, the characteristic equation for the matrix A =










1 2

3 2
 is given by

p A( )λ λ
λ

λ
λ λ= − =

−

−
= −( ) +( ) =I

1 2

3 2
4 1 0

�e roots of the characteristic equation give eigenvalues – 1 and 4.

X

Y

Y

λY

λX

AX = λX

X

X

Fig. 6 Eigenvalue λ and eigenvector X of matrix A
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xxii Preface

For example: consider the data set (0, –1), (1, 1), (2, 9), (3, 29), (5, 129). �e aim is to construct a 
polynomial of minimum degree which passes through all these points. We will discuss methods 
to construct such polynomial. �e polynomial P x x x( ) = + −

3 1 is the required polynomial and 
it passes through all these points.

x

P(x)

f(x)

Fig. 7 Interpolation

1−1 2 3 4 5

160
y = x3 + x − 1

y

x

140

120

100

80

60

40

20

−20

Fig. 8 Interpolating polynomial for data set  

(0, –1), (1, 1), (2, 9), (3, 29), (5, 129)

A data set is either the table of values of well-de�ned functions or the table of data points 
from observations during an experiment. �ese types of problems are most common in 
various experiments where only inputs and corresponding outputs are known. In most of the 
experimental cases, we have data points, i.e., inputs (x) and correspondingly outputs (y). Also, 
many practical problems involve data points instead of the mathematical model for the problem. 
For example, Indian government carries out national census a�er a gap of 10 years to speculate 
about the development in population of country. Hence, we have populations in these years as 
follows:

Years Population (in crores)

1961 43.9235

1971 54.8160

1981 68.33229

1991 84.6421

2001 102.8737

2011 121.0193

�is population data is exact up to four decimal digits. But, in intermediate years such as 1977, 
2010, etc., we do not have exact population. �e numerical techniques can be used to compute 
approximate populations in these years.
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Preface xxiii

Except for data points, sometimes, we also require approximating di�erent functions with 
polynomials due to the simple structure of the polynomials. �e polynomials are also easy for 
analysis like di�erentiation and integration etc. 

�is chapter is devoted to various techniques for the polynomial approximations of functions 
and data points. �e chapter also includes the piecewise interpolation. 

Chapter 9: Finite Operators introduces various �nite operators including �nite di�erence 
operators (forward, backward and central di�erence operators) and other operators like average 
or mean operator, shi� operator, and di�erential operator. �e chapter contains the relations 
between these operators. �is chapter also presents construction of �nite di�erence tables and 
the error propagation in these tables. 

�ese �nite di�erence operators are helpful in constructing solutions of di�erence equations 
and also used to construct interpolating polynomials for equally spaced points, as discussed in 
Chapter 10.

Chapter 10: Interpolation for Equal Intervals and Bivariate Interpolation contains some 
interpolation methods for equally spaced points. �e methods discussed in Chapter 8 
are applicable for both unequally as well as equally spaced points. Rather, the interpolating 
polynomial obtained from any formula is unique, but for equally spaced points, the calculations 
for interpolation become simpler and hence need more exploration. 

We will also discuss the extension of interpolation from one independent variable to two 
independent variables known as bivariate interpolation. 

Chapter 11: Splines, Curve Fitting, and Other Approximating Curves discusses approximations of 
data set other than interpolation. In interpolation, we �t a polynomial of the degree ≤n to (n + 1) 
data points. But if the data set is large, say 50 data points, then it is impractical to �t a polynomial 
of degree 49 to the data set. In this case, other approximation techniques like least squares curve 
�tting, spline �tting, etc., can be used. In this chapter, we will discuss di�erent approximation 
techniques which have certain advantages over interpolation in some real time problems. 

Curve �tting is to construct an approximate function f(x) (like exponential, polynomial, 
logistic curve, etc.) for a table of data points. 

x

f(x)

Fig. 9 Straight line �tting

10

5

0

–5

0.5 1 1.5 2.52
x

Fig. 10 Cubic spline curve
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xxiv Preface

Interpolating polynomials have global e�ect, i.e., if we change a point in the data set, then 
complete polynomial will change. Also if we change the order of data points, the interpolating 
polynomial remain same, which is not recommended for certain applications like computer 
graphics and designing, etc. In these cases, we can apply Bězier and B-Spline curves. 

y

x

2

31 4

2

3

1

y

x

3

4
1

2

y

x

2

4

3

1

y

x

Fig. 11 Bězier curves

In approximations of any polynomial by lower order polynomial, the maximum absolute error 
can be minimized by Chebyshev polynomials. We can deduce best lower order approximation 
to a given polynomial by using Chebyshev polynomials.

�e polynomial approximations are best approximations for smooth functions and 
experiments (data set). But if function/experiment behaves in chaos or singular manner (i.e. 
tends to in�nity at some points), then we have to approximate with some other function. One 
of the functions is a rational function of polynomials, and the approximation is known as Padé 
approximation.

Chapter 12: Numerical Di�erentiation is devoted to obtaining numerical di�erentiation from 
discrete data points. �is chapter elaborates some numerical di�erentiation techniques based 
on interpolation.
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a c b
x

f(x)

f(x)

dy

dx x=c

Fig. 12 Differentiation

Chapter 13: Numerical Integration deals with approximating the �nite integral of the functions, 
which are complicated enough to integrate analytically. For example, we don’t have exact closed 

form solutions of integrations like 1 2

0

+∫ cos ,x dx
π

 
sin

,
x

x
dx

1

2

∫  e dxx−∫
2

0

2

 etc. In these cases, we 

can simply apply numerical methods for the approximate solutions. Sometimes we have to 

�nd the integration from a set of discrete data points ( , ), , , ...,x y i ni i ={ }0 1 . It is not possible 

to integrate data points analytically, so it is imperative to approximate these integrations by 

numerical methods. For example, the value of integral y x dx( )
0

5

∫  for the given data set (0, –1),  

(1, 1), (2, 9), (3, 29), (5, 129) can be obtained only through numerical methods.

a b
x

f(x)

f(x)

a

f(x)dx
b

∫

Fig. 13 Integration

f(x)

f(x)(x
1
,
  
f(x

1
))

(x
0
,
  
f(x

0
))

x
0

x
x

1

I
T
 =  f(x)dx

x
1

x
0

∫

Fig. 14 Numerical Integration
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xxvi Preface

Chapter 14: First Order Ordinary Di�erential Equations: Initial Value Problems provides a 
detailed description of standard numerical techniques for the solution of �rst order ordinary 
di�erential equation (ODE) with the initial condition 

dy

dx
f x y y x y= =( , ), ( )0 0

�e ODE with initial conditions is known as initial value problem (IVP). Most of the physical 
laws have a rate of change of quantity rather than the magnitude of the quantity itself; e.g., 
velocity of any �uid (rate of change of distance), radioactive decay (rate of change of radioactive 
material), etc. Di�erential equations govern all these physical phenomena. �is chapter contains 
some basic de�nitions on di�erential equations. 

�e main aim of this chapter in to study numerical methods for the solutions of �rst order 
IVP. Di�erential equations, especially nonlinear, are not easy to solve analytically, as very few 
analytical methods exist in the literature for a limited class of di�erential equations. Hence, 
numerical methods play an important role in the theories of the di�erential equations. 

Consider the following examples 

i) 
dy

dx
x y y= + =

2 1 2, ( )

ii) 
d y

dx
x

dy

dx
y y y

2

2
0 1 0 1= + = ′ =sin ; ( ) , ( ) , .etc

�ese examples are di�cult to solve analytically, but we can use numerical techniques for 
approximate solutions of such ODEs. 

x
i

h

y

x

Slope = f (x
i 
, y

i
)

y
i+1

 = y
i
 + hf (x

i 
, y

i
)

Compute   y(x)

x
i+1

Given = f(x, y)=
dy

dx

Δy

Δx

Fig. 15 First order ODE

Chapter 15: Systems of First Order ODEs and Higher Order ODEs: Initial and Boundary Value 
Problems elucidates the steps involved for �nding numerical solutions of a system of �rst order 
ODEs and higher order ODEs with initial and boundary conditions, for examples 
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Systems of First Order ODEs:

i) 

dy

dx
x y z

dz

dx
z xy

y z

= + −

= −

= = −

2

0 1 0 1

sin( )

( ) , ( )

  ii) 

dy

dx
w x y z

dz

dx
z xy

dw

dx
x w y

y z

= + −

= −

= + −

= = −

sin( )

sin( )

( ) , ( ) ,

2

2

2

1 1 1 1 ww( ) .1 1 3=

Second and Higher Order Initial Value Problems

i) 
d y

dx
x

dy

dx
y y y

2

2
3 0 1 0 2+ + = = ′ =; ( ) , ( )

ii) 
d y

dx
x

d y

dx
xy x y y y

3

3

2

2
0 1 0 2 0 2+ + = = ′ = ′′ =sin cos ; ( ) , ( ) , ( )

Second and Higher Order Boundary Value Problems

i) x
d y

dx
x

dy

dx
y y y y2

2

2
1 3 0 2 0 1 1 3+ − + = + ′ = =( ) ; ( ) ( ) , ( )

ii) 
d y

dx
x

d y

dx
xy x y y y y

3

3

2

2
0 1 1 2 3 3 4+ + = = ′ = + ′′ = −sin cos ; ( ) , ( ) , ( ) ( )

In last chapter, we have described various numerical methods for the solutions of the �rst order 

ODE 
dy

dx
f x y y x y= =( , ); ( )0 0

. In this chapter, we will generalize these methods to �nd the 

numerical solutions of system of �rst order ODEs. 
�e chapter deals with the conversion of higher order ODEs to the systems of �rst order 

ODEs. �is chapter also includes the �nite di�erence approximations of derivatives and further 
solutions of boundary value problems using these �nite di�erences. 

Chapter 16: Partial Di�erential Equations: Finite Di�erence Methods presents various �nite di�erence 
methods for the solutions of some standard linear partial di�erential equations (PDEs). �e �nite 
di�erence method is a simple and most commonly used method to solve PDEs. In this method, we 
select some node points in the domain of the PDE. Various derivative terms in the PDE and the 
derivate boundary conditions are replaced by their �nite di�erence approximations at these node 
points. �e PDE is converted to a set of linear algebraic equations at node points. �is system of 
linear algebraic equations can be solved by any direct/iterative procedure discussed in Chapter 5.  
�e solution of this system of linear equations leads to the solution of PDE at node points. An 
important advantage of this method is that the procedure is algorithmic, and the calculations can 
be carried out on the computer. So, the solutions can be obtained in a systematic and easy way.

PDEs are of great signi�cance in describing the systems in which the behavior of any physical 
quantity depends on two or more independent variables. Laplace and Poisson equations (steady-
state �ow, �uid mechanics, electromagnetic theory and torsion problems), heat conduction 
equation (temperature distribution) and wave equation (vibrations, �uid dynamics, etc.) are 
some important examples of second order linear PDEs. Numerical techniques for the solution 
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xxviii Preface

of PDEs include �nite di�erence methods (FDMs), �nite volume methods (FVMs) and �nite 
element methods (FEMs). �is chapter contains only a few �nite di�erence techniques for the 
solutions of following PDEs governing some important physical phenomena. 

Parabolic Equation (Heat Conduction or Di�usion Equation)

∂
∂

=
∂
∂

u

t
c

u

x

2

2
   (1-Dimensional heat conduction equation)

∂
∂

=
∂
∂

+
∂
∂







= ∇

u

t
c

u

x

u

y
c u

2

2

2

2

2  (2-Dimensional heat conduction equation)

Elliptic Equation (Laplace and Poisson Equations)

∇ ≡
∂
∂

+
∂
∂

=2
2

2

2

2
0u

u

x

u

y
  (Laplace equation in 2-dimensions)

∇ ≡
∂
∂

+
∂
∂

=2
2

2

2

2
u

u

x

u

y
f x y( , ) (Poisson equation in 2-dimensions)

Hyperbolic Equation (Wave Equation) 

∂
∂

=
∂
∂

2

2

2
2

2

u

t
c

u

x
   (1-Dimensional wave equation)

�e primary focus is on the preliminary material and the basic concepts of the �nite di�erence 
techniques used in the book along with their application procedures to derive the numerical 
solutions of the PDEs.
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Fig. 16 Partial differential equations
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