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Introduction
This Element introduces and critically explores the Bayesian approach to the
logic and epistemology of scientific reasoning. This approach is distinguished
by its conceptual medium and formal method. Bayesians paint in the medium
of what has variously been called “degree of belief,” “credence,” “confidence,”
and so on – which is to say that Bayesian accounts essentially involve a gra-
dational notion of the doxastic attitude that agents have toward propositions.
Some common terminology notwithstanding (e.g., “partial belief” and “degree
of belief ”), this concept is not a straightforward, gradational version of belief,
which would be referring to something like proportion of outright belief. Such
a notion would “max out” in the case of belief simpliciter, but Bayesians tend to
be very quick in dismissing the identification of maximal degree of belief, cre-
dence, and so on with qualitative belief (Maher, 1993; Leitgeb, 2013; Buchak,
2013). Much more commonly, the Bayesian’s gradational medium is described
as maxing out in the special case of certainty (e.g., Ramsey 1926, §3; Jaynes
2003; Jeffrey 2004; Leitgeb 2013; Sprenger and Hartmann 2019, p. 26). Cer-
tainty is a doxastic, propositional attitude of agents generalizing naturally to
less extreme attitudes of uncertainty or confidence. Accordingly, in an attempt
to avoid confusion in this Element, I use these latter terms when referring to
the concept at the core of Bayesian accounts.1

Regarding method, Bayesians conduct their investigations using the mathe-
matical tools of probability. This formal approach enables Bayesians to pursue
their philosophical work with rigor and precision. The use of probability theory
goes hand in hand with Bayesianism’s focus on confidence; indeed, Bayesians
view the probability calculus as an apt formal tool because of their emphasis
on confidence and uncertainty. The bridge between medium and method here
is the Bayesian’s epistemic interpretation of probabilities as degrees of (more
or less operationalized and/or idealized conceptions of) confidence.

Terms of art in probability theory – like “probable” and “likely” – are often
used in everyday language to communicate epistemic judgments of uncertainty.
However, the Bayesian interpretation is far from uncontroversial. Probability
theory, mathematically speaking, is a branch of measure theory, complete with
an axiomatization and consequent structure (Kolmogorov, 1933). While the
epistemic interpretation of probability as a guide to rational confidence was
there from the beginning of this math’s development, much of this development
was driven by more objective, physical, and aleatory concepts, applications,

1 The use of “partial belief ” and “degree of belief ” to refer to Bayesianism’s central notion can
indeed lead to confusion and criticisms of Bayesianism that are rather too easy. For example,
see Horgan’s (2017, p. 236) “conceptual confusion” objection to Bayesianism.
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2 Philosophy of Science

and interpretations (see Hacking 2006, ch. 2). The mathematics of probabil-
ity was at best developed only in part as an explication of confidence. Thus,
a case needs to be made for the validity and usefulness of the Bayesian’s
interpretation.

This Element explores the Bayesian approach to logic and epistemology
in three parts. Section 1 provides a primer on the elementary mathematics
of probability, motivated and presented through a Bayesian lens. We develop
probability theory as a conservative generalization of classical logic, which
is more readily applicable to reasoning under uncertainty. Probability theory
provides a logic of consistency for attitudes of confidence. That is, probabil-
ity theory describes how an agent’s confidences (at a particular time) ought to
relate in order for them to be internally consistent. Additionally, this section dis-
cusses the Bayesian interpretation of probability as a measure of confidence,
and it critically evaluates some of the common arguments presented for and
against this interpretation.

Section 2 explores a number of contentious principles put forward and
debated by Bayesians. Unlike the rules discussed in Section 1, these prin-
ciples are more characteristically and recognizably epistemological. This is
because they go beyond the logic of consistency in theorizing about how our
confidences ought to be, not just related to each other, but sensitive to and con-
strained by our experience of the world. For direction in our exploration, we
turn to the patron saint of Bayesian epistemology, the good Reverend Thomas
Bayes, and his seminal “Essay Towards Solving a Problem in the Doctrine of
Chances” (1763). Bayes suggests three epistemological principles in this work,
each of which is still much discussed, developed, and debated by contempo-
rary Bayesian epistemologists. We discuss these principles in some detail along
with some corresponding criticisms and complications that lie in wait for the
Bayesian epistemologist.

The final Section 3 displays the potential fruitfulness of the Bayesian
approach for the study of scientific reasoning. We introduce just a handful of
the many topics Bayesians have discussed in the epistemology of science: spe-
cifically, we focus on the epistemology of confirmation, explanatory reasoning,
evidential diversity and robustness analysis, hypothesis competition, and Ock-
ham’s Razor. Via our discussions of these topics, we aim to show that our
understanding of some important concepts, methods, and strategies commonly
used in scientific practice can be improved by taking a Bayesian approach.

For the sake of keeping this work Element-length, I’ve often had to refrain
from delving into interesting issues and obvious questions left standing by my
presentations. At one level, this necessity has bothered me, since it opens me
up to criticisms that I might have tried to preempt and limits me to simplistic
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overviews of certain topics. However, at another level, I think and hope that the
result is more conducive to promoting further discussion (be it in classrooms
or research settings), and indeed to inspiring a wider variety of future research
on the relevant issues.

I first learned about Bayesianism through a series of courses I took from Tim-
othy McGrew as an MA student at Western Michigan University (from 2004
to 2006). To this day, I owe Tim an enormous debt of gratitude, not only for
introducing me to an enjoyable and fascinating field of study, but also for being
such a patient, caring, and careful instructor. The “dartboard representations”
I employ in Section 1 trace their roots to similar diagrams Tim developed and
used when introducing me to the field. My deepest thanks additionally go out
to several colleagues and students who willingly and graciously gave their time
to read drafts of this work and provide me with feedback. Jonathan Livengood
and Joshua Barthuly in particular each carefully read and provided substantial
feedback on complete drafts of this Element; this work is much better because
of their gracious help. Other readers who gave me invaluable feedback on por-
tions of the text include Jean Berroa, Liam Egan, Samuel Fletcher, Konstantin
Genin, David H. Glass, Qining (Tim) Guo, Robert Hartzell, Daniel Malinsky,
Conor Mayo-Wilson, Lydia McGrew, Jacob Stegenga, Michael Titelbaum, Jon
Williamson, and two anonymous reviewers for Cambridge University Press.
The material for §3.3.2 and a large part of §3.4 was developed in collaboration
with David H. Glass. My heartfelt gratitude also goes out to Abbot Silouan and
all of the monks at the Monastery of the Holy Archangel Michael (Cañones,
New Mexico) for providing me with gracious hospitality, good conversation,
and the unimaginably peaceful environment of their guesthouse, where I wrote
the bulk of this Element.

While working on this Element, I was supported by the Charles H. Mon-
son Mid-Career Award administered by the University of Utah’s Philosophy
Department and by grant #61115 from the John Templeton Foundation (which
I co-directed with David H. Glass). The opinions expressed in this Element are
those of the author and do not necessarily reflect the views of either of these
funding sources.

Finally, “thank you” is not enough when I try to imagine how I should
respond to the support, love, and joy that I receive everyday from my wife
and children. I don’t deserve such blessings. Truth be told, my confidence is
not very high that any one of them will ever read the entirety of this Element.
Nonetheless, it wouldn’t have happened were it not for them, and I dedicate it
to them.

www.cambridge.org/9781108714013
www.cambridge.org


Cambridge University Press
978-1-108-71401-3 — Bayesianism and Scientific Reasoning
Jonah N. Schupbach 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press
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1 Probability Theory, a Logic of Consistency
Bayesianism is characterized by its focus on the notion of confidence (“degree
of belief,” “credence,” “partial belief,” etc.) and its corresponding epistemic
interpretation of probability theory.2 Bayesians apply the probability calculus,
so interpreted, to a wide variety of epistemological principles, concepts, and
puzzles. This section introduces the mathematics of probability theory through
a Bayesian lens. By first touching on some features of classical, deductive logic,
we highlight the need to generalize this formal logic in order to deal directly
with the inevitable uncertainties of scientific (and everyday) inferences. The
probability calculus, when given a Bayesian interpretation, provides a partic-
ularly appealing generalization, resulting in a compelling logic of consistency
for the confidences of uncertain agents. We finish this section by considering
some arguments for and against this way of construing probability theory.

1.1 Logic and Uncertainty
Logic is the science of inference. This discipline systematically studies the
relation by which conclusions follow from premises. As such, while logic
is fundamental to epistemology, the two disciplines are distinct. Epistemol-
ogy would surely be lacking if it gave no role to inference in the theory of
knowledge, but there are other factors besides inference that play crucial epis-
temological roles.3 Logic is also distinct from another science of inference, the
psychology of inference, which observes, predicts, and models the inferential
behavior of humans actually drawing conclusions from premises.4 Logic, by
contrast, is more of a theoretical science. It theorizes about the existence and
nature of general principles relating conclusions and premises in such a way
as to legitimize, guide, and regulate such behavior. These principles, which the
renowned logician George Boole (1854) called the “laws of thought,” concern
the fundamental nature of consequence, or what follows from what.

2 Bayesianism is often additionally characterized as being committed to Bayes’s Rule, a princi-
ple legislating how confidences (explicated as probabilities) should evolve over a diachronic
process of learning new information. We postpone our discussion of this principle until
Section 2.

3 There are other conceptions of logic, some of which encompass epistemology. For example,
Ramsey (1926, p. 87) views logic as consisting of two parts, “formal logic” or the explicative
logic of consistency, and “inductive logic” or the ampliative logic of discovery and truth. I
accept Ramsey’s distinction but am trying to keep terminology tidy by reserving “logic” for
Ramsey’s notion of formal logic. What Ramsey calls “inductive logic” is part of epistemology
as I characterize it – cf. Jeffreys’s (1939, p. 1) remark: “The theory of learning in general is the
branch of logic known as epistemology.”

4 The wisdom of distinguishing the logical from the psychological may be questioned, how-
ever. Kimhi (2018), for example, argues that the sundering of the two is a recent, Fregean
development that has had detrimental philosophical effects.
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Logic is also sometimes thought of as the study of valid inference, in
which the truth of a target conclusion follows inescapably from the collec-
tive truth of a set of corresponding premises (i.e., such that the conclusion
cannot possibly be false if the premises are all true).5 But while this seems a
fair characterization of classical, deductive logic, the science-of-inference and
study-of-valid-inference conceptions of logic may come apart for at least two
related reasons. First, some inferences are logical in the sense that their con-
clusions follow from corresponding premises, even though they don’t follow
as a matter of necessity (i.e., even though the inferences aren’t valid). Second,
it may be useful to examine a notion of inference that relates propositions with
respect to something other than their truth values. Both of these considerations
underlie the approach to inductive logic that we take in this Element.

At the heart of both considerations is the attempt to accommodate the
ubiquitous presence of uncertainty in scientific reasoning (and human reason-
ing more generally). Apart from some very special contexts in which truth
values may legitimately be directly known with certainty, or stipulated, or con-
structed, and so on, reasoners are plagued by uncertainty. They simply do not
have omniscient access to the truth values of propositions. What they have
instead are inferior surrogate attitudes toward propositions, including attitudes
of confidence and uncertainty.

Knowing how propositions relate to each other in terms of their truth
values can still be very useful information for an uncertain agent. However,
an alternative, inductive approach to logic seeks to shed light more directly
on how propositions relate to each other in terms of the uncertain attitudes
agents actually have toward them.6 Instead of studying what truths follow
from other truths, this approach studies what confidences, expectations, uncer-
tainties, and the like follow from other such attitudes. And on this approach,
it may be that some invalid inferences are nonetheless good insofar as (and
possibly to the extent that) their conclusions are made more nearly certain
by their corresponding premises. We seek a logic better suited for mortals,

5 While some writers use the term “valid” to apply to good inductive arguments (e.g., Priest
2006; Sprenger and Hartmann 2019), in this Element, I reserve the term strictly for the notion
of deductive validity.

6 Alternatively, one might think of inductive logic as relating propositions in terms of their truth
values, while generalizing the notion of consequence itself. From this perspective, inductive
logic is still about what truths follow from other truths; however, the salient notion of con-
sequence is generalized to allow for degrees of “partial entailment” and/or non-monotonic
inference. Bolzano’s (1837) notion of “relative satisfiability” is an early example of this perspec-
tive (see Howson 2011, §2). Other examples include Wittgenstein’s interpretation of probability
in the Tractatus (1922, §5.15) (see Williamson 2017, §1.1), “logical interpretations” of proba-
bility in terms of “partial entailment” (Keynes, 1921; Jeffreys, 1939; Carnap, 1962), and Priest’s
(2006, pp. 189–190) account of “inductive validity” using a non-monotonic logic.

www.cambridge.org/9781108714013
www.cambridge.org


Cambridge University Press
978-1-108-71401-3 — Bayesianism and Scientific Reasoning
Jonah N. Schupbach 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 Philosophy of Science

a logic of uncertain inference for agents like us who don’t have omniscient
access to truth values.

Scientific practice provides any number of instances of compelling argu-
ments in contexts of uncertainty. For example, in On the Heavens Aristotle
builds a case from multiple lines of evidence for accepting the sphericity of the
earth. His arguments provide a compelling interplay of observational evidence
and inference.7 He cites the evidence of the earth’s shadow’s circular shape as
observed during a lunar eclipse. He then infers from this evidence and from his
(accurate) understanding of lunar eclipses that the earth is a sphere, since that
shape would account for this observation, given that theory. Similarly, Aristotle
records observations of an “alteration of the horizon” relative to the fixed stars
effected by northward or southward travel. He then infers from this evidence
that the earth is a sphere, since again that shape would account for differences
in the visible stars depending on an observer’s latitude.8 Distilled into a more
organized form, the arguments are as follows:

Argument 1:
A1. If the earth is spherical, it would cast a circular shadow.
A2. The earth casts a circular shadow.
C. Thus, the earth is spherical.

Argument 2:
B1. If the earth is spherical, northward and southward travel would alter the

range of visible stars.
B2. Northward and southward travel alters the range of visible stars.
C. Thus, the earth is spherical.
Both of these arguments are still used today and considered to provide pow-

erful reasons for accepting the earth’s sphericity. And they both exemplify an

7 It’s a longstanding and stubbornly persisting myth (still taught in schools, despite repeated cor-
rections) that Christopher Columbus courageously embarked on his 1492 journey in the face of
fears that his ship would fall off the edge of a flat earth. The truth is that virtually no educated
Western European at the time of Columbus shared in such fears. Not only did the ancient Greeks
discover the earth’s shape, but they also made impressively accurate calculations of its size. This
enduring myth was invented in the 1820s by the American writer, Washington Irving, and prop-
agated in his History of the Life and Voyages of Christopher Columbus (Lindberg, 2007, p. 161).
For more on the invention of this flat earth myth, see Russell (1991) and Garwood (2008).

8 Aristotle’s own presentation of these arguments runs as follows: “How else would eclipses of
the moon show segments shaped as we see them? […I]n eclipses the outline is always curved;
and, since it is the interposition of the earth that makes the eclipse, the form of this line will be
caused by the form of the earth’s surface, which is therefore spherical. Again, our observations
of the stars make it evident, not only that the earth is circular, but also that it is a circle of no
great size. For quite a small change of position to south or north causes a manifest alteration of
the horizon. There is much change, I mean, in the stars which are overhead, and the stars seen
are different, as one moves northward or southward.” – De Caelo 297b24-34, as translated in
Barnes (1984).
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extremely common style of scientific reasoning: we confirm a hypothesis by
observing evidence that we expect to find if the hypothesis is true. But uncer-
tainty manifests itself in these arguments in both of the aforementioned ways.
First, the conclusion doesn’t follow inescapably in either case; that is, the infer-
ence in both cases is invalid and thus uncertain. In fact, as any astute intro to
logic student will quickly recognize, both arguments – if construed as attempts
at deductive argumentation – commit the ostensibly pernicious, elementary
fallacy of affirming the consequent! The earth could have some nonspherical
shape (e.g., a flat disc) that still casts a circular shadow on the moon because
of its orientation with respect to the Sun; and north/southward travel would
result in a change of horizon with respect to the fixed stars if the earth were, for
example, a properly oriented cylinder instead of a sphere. So neither argument’s
premises force it to be true that the earth is a sphere. A classically deductive
approach, by focusing exclusively on valid inference, will thereby neglect any
sense in which these invalid arguments are nonetheless good.

Second, reasoners aren’t handed the truth values of these premises. For
example, in Argument 1, A2 is particularly questionable since the shadow
observed during lunar eclipses is, at any one time, partial with fuzzy bound-
aries. A1 is also dubious; even if the earth were a perfect sphere (which, of
course, it’s not), we wouldn’t expect it to cast a perfectly circular shadow onto
the moon insofar as the surface of the moon is itself curved and includes signifi-
cant elevation changes (mountains and craters). At best, we are highly confident
in the approximate truth of both premises, but classical, deductive logic tells
us nothing about what to do with such attitudes and what they may or may not
imply about the attitude we should take toward conclusion C.

The motivation behind the approach taken here is to develop a logic that can
make sense of uncertain inferences like Aristotle’s. If our logic is going to make
room for such inferences, then it must allow for a sense in which deductively
invalid arguments can be cogent. And if our logic is to guide agents like us in
reasoning similarly, it should instruct us with respect to the uncertain attitudes
we are working with in such cases.

1.2 From Deductive Logic to Probability Theory
Here, we introduce the probability calculus as a promising inductive logic.
While we ultimately want to move beyond a logic that relates propositions in
terms of truth values, we will presently find reasons to think that the formal
semantics of deductive logic should be retained as a limiting case of our induc-
tive logic. Accordingly, it will prove useful for us to begin with a quick review
of the formal language of classical, propositional logic.
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Once we’ve defined the vocabulary and grammar of propositional logic, we
have all we need to distinguish well-formed (grammatical) from ill-formed
(ungrammatical) parts of a formal-logical language. In this Element, we’ll
use italicized, capital letters like E;H;K;P;Q;R; and S as the basic atoms
of our formal language. They count as grammatical by themselves. More
complex statements of propositional logic can be formulated using standard
“connectives,” like :, ^, and _. These don’t just connect to atomic formu-
lae (capital letters) but may be used to connect any grammatical statements of
the formal language, according to the following recursive definition (here and
throughout, we use lowercase Greek letters as metavariables standing in for
any grammatical formula of the language):

Grammatical formulae for propositional logic:
� Capital letters (possibly with subscripts) are grammatical formulae;
� If � is a grammatical formula, then so is :�;
� If � and  are grammatical formulae, then so are .� _ / and .� ^ /;9

� Only formulae that can be shown to be grammatical by the above
conditions are grammatical.

These capital letters and connectives are supposed to mean something to us;
they’re specifically meant to be more exact versions of familiar components of
our natural language. For example, : is supposed to be like the English word
“not,” ^ like “and,” and _ like the English inclusive “or” (“inclusive” mean-
ing that the “or” statement doesn’t rule out the possibility of both statements it
connects being true). But it’s important to note that, at this point in the devel-
opment of the logical language, a grammatical formula like “.P ^ .:Q_R//”
means no more than complete gibberish, like “.._ ^ ¾PD”. In order to make
our grammatical statements mean something, we need to go one more crucial
step and specify their semantics.

Classical logic’s reliance on truth values becomes apparent (and incredibly
helpful) at this point. The formal semantics of propositional logic is straightfor-
wardly “truth-functional,” meaning that its connectives’ meanings are specified
precisely by articulating the truth values they output as a function of all possible
combinations of truth values they take in. The connective : denotes nega-
tion, the truth-functional operation resulting in a true statement if and only if

9 The connective for the material conditional ! is conspicuously absent from this list. In the rare
cases where this connective makes an appearance, we’ll think of it as part of our non-primitive
vocabulary, p.� !  /q being short for p:.� ^ : /q. In fact, ! will not play a substantial
role in our discussions.

Though all grammatical disjunctions and conjunctions officially are enclosed in parentheses,
we will follow a standard practice and drop outermost parentheses – i.e., any parentheses that
have the entire remainder of the formulae within their scope.
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the statement negated is false. The _ denotes disjunction, the truth-functional
operation resulting in a false statement if and only if both of the connected
“disjuncts” are false. The ^ denotes conjunction, the truth-functional operation
resulting in a true statement if and only if both of the connected “conjuncts”
are true. Articulating this formal semantics in terms of the standard truth tables
(and again using lowercase Greek letters as metavariables standing in for any
grammatical formula of the language), we have:

� :�

T F
F T

�  � _  

T T T
T F T
F T T
F F F

�  � ^  

T T T
T F F
F T F
F F F

From the viewpoint of inductive logic, there is nothing amiss thus far. Defin-
ing these connectives by specifying their truth-functional roles makes sense
even if you deny that reasoners have direct access to such truth values. Nonethe-
less, while classical logic may offer an appropriate truth-functional semantics,
that formal semantics falls short of providing us with an inductive logic of
confidences.

In working toward such a logic, the following interesting point is crucially
important. Classical logic’s truth-functional semantics doubles as a plausible
certainty-functional semantics. That is, we can interpret “T” as “certainty of
truth” as opposed to truth simpliciter and “F” as “certainty of falsehood” as
opposed to falsehood simpliciter, and all of the tables still turn out right. For
example, this reading of the negation sensibly associates certainty that :� is
true [false] with certainty that � is false [true]. This shift in interpretation is
substantial; instead of trading directly in truth values, it trades in attitudes that
we might have toward propositions, albeit extreme attitudes that we may have
only rarely. To mark the shift in interpretation, let’s rewrite the above tables
using different values; we’ll use “1” for certainty of truth and “0” for certainty
of falsity:

� :�

1 0
0 1

�  � _  

1 1 1
1 0 1
0 1 1
0 0 0

�  � ^  

1 1 1
1 0 0
0 1 0
0 0 0

Using numerical values marks our shift in interpretation, but this move also –
regardless of interpretation – allows us to represent deductive logic’s formal
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10 Philosophy of Science

semantics algebraically. Let Val be the “valuation function” that assigns to
classical logic’s grammatical formulae a member of the set f0; 1g.

The first and third tables are then straightforwardly summarized in terms of
Val as follows:

� Val.:�/ D 1 � Val.�/.
� Val.� ^  / D Val.�/ � Val. /.

The case of _ is somewhat less obvious, and it proves instructive to flounder
a bit trying to represent its table algebraically. Were it not for the first line
of _’s table, the following straightforward sum operation would do the trick:
Val.� _  / D Val.�/ C Val. /. In other words, in the special case where
the first line can be ignored, this simple sum operation would be correct. But
we’re right to ignore the first line as a genuine possibility exactly when � and
 cannot possibly be jointly true – that is, when they are “mutually exclusive.”
This is worth emphasizing:

� If � and are mutually exclusive, then Val.�_ / D Val.�/CVal. /.

Of course, we still want a general algebraic representation for disjunction. The
reason that the above rule doesn’t work for the case when we are certain that
both � and  are true is because Val.� _  / would equal two instead of the
appropriate value of one according to the straightforward sum. To correct for
this, we could just subtract out a function that takes value one when Val.�/ D

Val. / D 1 and 0 otherwise. We already have such a function in Val.� ^ /!
Thus, our general algebraic representation for _ is:

� Val.� _  / D Val.�/C Val. / � Val.� ^  /.

To recap, we are seeking a logic that deals in confidences and uncertain-
ties instead of dealing directly in truth-values. Nonetheless, we have found it
useful to start with the truth-functional semantics for classical logic, since this
semantics doubles as a plausible certainty-functional semantics. This makes
intuitive sense since extreme cases in which we have certainty of the truth or
falsity of some proposition correspond exactly with those cases where we at
least take ourselves to be dealing directly with truth-values. The upshot is that
our inductive logic should retain the above algebraic rules, at least as limiting
case rules that hold in contexts of certainty (i.e., degenerate cases of uncertainty
or extreme cases of confidence).

Probability theory can then be thought of as a conservative departure from
classical logic in the sense that it preserves all of the above algebraic rules for
the connectives – and indeed uses two of these rules in particular to ground all
of its mathematics. Probability generalizes the bivalent, classical semantics, not
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