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Infinite Planar Graphs with Non-negative

Combinatorial Curvature

Bobo Hua and Yanhui Su

Abstract

In this chapter, we survey some results on infinite planar graphs with non-

negative combinatorial curvature, related to the total curvature, the number of

vertices with positive curvature and the automorphism group.

1.1 Introduction

The combinatorial curvature for planar graphs was introduced by Nevanlinna,

Stone, Gromov, and Ishida [Nev70, Sto76, Gro87, Ish90] respectively, which

resembles the Gaussian curvature for smooth surfaces. Many interesting geo-

metric and combinatorial results have been obtained under such curvature

conditions since then (see, e.g., [Ż97, Woe98, Hig01, BP01, HJL02, LPZ02,

HS03, SY04, RBK05, BP06, DM07, CC08, Zha08, Che09, Kel10, KP11,

Kel11, Oh17, Ghi17]).

Let (V, E) be a (possibly infinite) locally finite, undirected simple graph

with the set of vertices V and the set of edges E . It is called planar if it can be

topologically embedded into the sphere S
2 or the plane R

2, where we distin-

guish S
2 with R

2 while they are identified in the theory of finite planar graphs.

We write G = (V, E, F) for the cellular complex structure of a planar graph

induced by the embedding where F is the set of faces, i.e., connected compo-

nents of the complement of the embedding image of the graph (V, E) in S
2 or

R
2. We say that a planar graph G is a planar tessellation if the following hold

(see, e.g., [Kel11]):

(i) Every face is homeomorphic to a disc whose boundary consists of finitely

many edges of the graph.
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Figure 1.1 A planar graph G consists of a pentagon and infinitely many hexagons

(ii) Every edge is contained in exactly two different faces.

(iii) For any two faces whose closures have non-empty intersection, the

intersection is either a vertex or an edge.

In this chapter, we only consider planar tessellations (see Figure 1.1 for an

example) and call them planar graphs for the sake of simplicity. For a planar

tessellation, it is finite (infinite resp.) if and only if it embeds into S
2 (R2 resp.).

We say that a vertex x is incident to an edge e, denoted by x ≺ e, (similarly,

an edge e is incident to a face σ , denoted by e ≺ σ ; or a vertex x is incident

to a face σ, denoted by x ≺ σ ) if the former is a subset of the closure of the

latter. Two vertices x and y are called ‘neighbours’ if there is an edge e such

that x ≺ e and y ≺ e, in this case denoted by x ∼ y. We denote by deg(x)

the degree of a vertex x, i.e., the number of neighbours of a vertex x, and by

deg(σ ) the degree of a face σ, i.e., the number of edges incident to a face σ

(equivalently, the number of vertices incident to σ ). We always assume that for

any vertex x and face σ,

deg(x) ≥ 3, deg(σ ) ≥ 3.

We denote by

(deg(σ1), deg(σ2), · · · , deg(σN ))

the pattern of a vertex x where N = deg(x), {σi }
N
i=1 are the faces which x is

incident to, and deg(σ1) ≤ deg(σ2) ≤ · · · ≤ deg(σN ).

Given a planar graph G = (V, E, F), one may canonically endow its ambi-

ent space S
2 or R

2 with a piecewise flat metric as follows: assign each edge

length one, replace each face by a regular Euclidean polygon of side length one
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with same facial degree, and glue these polygons along the common edges. The

ambient space equipped with the induced metric constructed above is called

the regular polyhedral surface of G, denoted by S(G). In the following, we

always call it the polyhedral surface for the sake of brevity. For a planar graph

G, the combinatorial curvature at the vertex is defined as

�(x) = 1 −
deg(x)

2
+

∑

σ∈F :x≺σ

1

deg(σ )
, x ∈ V . (1.1.1)

In this chapter, we mean by the curvature of a planar graph the combinato-

rial curvature of it for simplicity. It turns out that the curvature of a planar

graph is given by the generalized Gaussian curvature of the polyhedral surface

S(G) up to some normalization. Note that for the polyhedral surface S(G) it

is locally isometric to a flat domain in R
2 near any interior point of an edge

or a face, while it might be non-smooth near the vertices. As a metric surface,

the generalized Gaussian curvature K of S(G) vanishes at smooth points and

can be regarded as a measure concentrated on the isolated singularities, i.e.,

on vertices. One can show that the mass of the generalized Gaussian curva-

ture at each vertex x is given by K (x) = 2π − �x , where �x denotes the

total angle at x in the metric space S(G) (see [Ale05]). Moreover, by direct

computation one has K (x) = 2π�(x), where the curvature �(x) is defined in

(1.1.1). Hence, one can show that a planar graph G has non-negative curvature

if and only if the polyhedral surface S(G) is a generalized convex surface in the

sense of Alexandrov (see [BGP92, BBI01, HJL15]). Furthermore, the polyhe-

dral surface S(G) can be isometrically embedded into R
3 as a boundary of a

compact or non-compact convex polyhedron by Alexandrov’s embedding the-

orem ([Ale05]); see Figure 1.2 for an embedded image of S(G) of the planar

graph G in Figure 1.1.

Figure 1.2 The isometric embedding of S(G) of the planar graph G in Figure 1.1
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In this chapter, we study planar graphs with non-negative curvature. We

introduce two classes of planar graphs with positive or non-negative curvature

as follows:

● PC>0 := {G : �(x) > 0,∀x ∈ V } is the class of planar graphs with

positive curvature everywhere.

● PC≥0 := {G : �(x) ≥ 0,∀x ∈ V } is the class of planar graphs with

non-negative curvature everywhere.

We review some known results on the class PC>0. Stone [Sto76] first proved

a Myers-type theorem: a planar graph with the curvature bounded below uni-

formly by a positive constant is a finite graph. Higuchi proposed a stronger

conjecture that any G ∈ PC>0 is a finite graph (see [Hig01, Conjecture 3.2]).

This is certainly wrong for smooth surfaces since there are many non-compact

convex surfaces in R
3, which have positive curvature everywhere. However,

for a planar graph it is hopefully true by the combinatorial restriction of reg-

ular polygons as its faces. DeVos and Mohar [DM07] proved the conjecture

by showing a generalized Gauss–Bonnet formula (see [SY04] for the case of

cubic graphs).

For any finite planar graph G ∈ PC≥0, in particular any G ∈ PC>0,

by Alexandrov’s embedding theorem its polyhedral surface S(G) can be iso-

metrically embedded into R
3 as a boundary of a convex polyhedron (see,

e.g., [Ale05]). From this point of view, we obtain many examples for the

class PC>0, e.g., the 1-skeletons of 5 Planotic solids, 13 Archimedean solids,

and 92 Johnson solids. Any of them has regular Euclidean polygons as its

faces in its embedded image in R
3. Note that these are all examples of

planar graphs in PC>0 whose faces of the embedded image in R
3 are reg-

ular polygons (see [Joh66, Zal67]). Besides these, the class PC>0 contains

many other examples, such as an example of 138 vertices constructed by

Réti, Bitay, and Kosztolányi [RBK05], examples of 208 vertices by Nichol-

son and Sneddon [NS11], Ghidelli [Ghi17], and Oldridge [Old17], which

cannot be realized as the boundary of a convex polyhedron whose faces are

regular polygons. In fact, although any face of G ∈ PC>0 is isometric

to a regular polygon in S(G), it may split into several pieces of non-

coplanar faces in the embedded image of S(G) as the boundary of a convex

polyhedron in R
3.

There are two special families of graphs in PC>0 called prisms and

antiprisms, both consisting of infinite many examples (see, e.g., [DM07]).

Besides them, DeVos and Mohar [DM07] proved that there are only finitely

many graphs in PC>0 and proposed the following problem to find out the

largest graph among them.
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Problem 1.1.1 ([DM07]) What is the number

CS2 := max
G=(V,E,F)

♯V ,

where the maximum is taken over graphs in PC>0, which are not prisms or

antiprisms, and ♯V denotes the cardinality of V ?

On the one hand, as some examples of 208 vertices in PC>0 have been

constructed in [NS11, Ghi17, Old17], we have the lower bound estimate that

CS2 ≥ 208. On the other hand, DeVos and Mohar [DM07] initiated to use

the discharging methods to obtain the upper bound estimate CS2 ≤ 3444. The

discharging methods were adopted in the proof of the four-colour theorem in

the literature (see [AH77, RSST97]). The upper bound was later improved to

CS2 ≤ 380 by Oh [Oh17]. By a delicate argument, Ghidelli [Ghi17] showed

that CS2 ≤ 208, which completely solves DeVos and Mohar’s problem that

CS2 = 208.

Next, we consider the class of planar graphs with non-negative curvature,

i.e., PC≥0, which turns out to be much larger than PC>0 and contains many

interesting examples. The class of PC>0 consists of essentially finite many

examples, while the class PC≥0 contains infinitely many examples of differ-

ent combinatorial types. A fullerene is a finite cubic planar graph whose faces

are either pentagon or hexagon. There are plenty of examples of fullerenes

which are important in the real-world applications, to cite a few examples

[KHO+85, Thu98, BD97, BGM12, BE17a, BE17b]. Note that any fullerene

is a planar graph with non-negative curvature. As shown by Thurston [Thu98],

the number of combinatorial types of fullerenes with N hexagons grows as

N 9 as N → ∞. Besides these examples of finite graphs, there are plenty of

examples of infinite graphs. Any planar tiling with regular polygons as tiles

(see, e.g., [GS89, Gal09]) is in the class PC≥0. Note that there are infinitely

many such planar tilings, for which only a few examples with symmetry can

be classified. These motivate us to investigate the general structure of planar

graphs in the class PC≥0.

1.2 Total Curvature of Planar Graphs with Non-negative

Curvature

For a smooth non-compact surface with absolutely integrable Gaussian curva-

ture, its total curvature encodes the global geometric information of the space,

e.g., the boundary at infinity (see [SST03]). For example, the total curvature of

a convex surface in R
3 describes the apex angle of the cone at infinity of the
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surface, which is useful to study global geometric and analytic properties of

the surface, such as harmonic functions and heat kernels, following [CM97b,

Xu14]. For planar graphs with non-negative curvature G, we denote by

�(G) :=
∑

x∈V

�(x)

the total curvature of G whenever the summation converges absolutely. In case

of finite graphs, the Gauss–Bonnet theorem reads as (see, e.g., [DM07])

�(G) = 2. (1.2.1)

For an infinite planar graph G ∈ PC≥0, the Cohn-Vossen type theorem, proven

by [DM07, Theorem 1.3] or [Che09, Theorem 1.6], yields that

�(G) ≤ 1. (1.2.2)

This means that for any infinite G ∈ PC≥0, the total curvature of G satisfies

0 ≤
∑

x∈V

�(x) ≤ 1.

In this section, we study all possible values of total curvature of infinite planar

graphs with non-negative curvature, i.e., the following set

{�(G) : G infinite,G ∈ PC≥0}. (1.2.3)

As is well known in Riemannian geometry that for any real number 0 ≤

a ≤ 2π , there is a convex surface whose total curvature is given by a. Hence,

the above set for non-compact convex surfaces turns out to be an interval in

the continuous setting. However, combinatorial structure of planar graphs with

non-negative curvature gives us more information and restrictions for the set

(1.2.3).

For any G = (V, E, F) ∈ PC≥0, we denote by

TG := {v ∈ V : �(x) > 0} (1.2.4)

the set of vertices with positive curvature, and by

DG := sup
σ∈F

deg(σ ) (1.2.5)

the maximal facial degree of G. Chen and Chen [CC08, Che09] proved an

interesting result that the set of vertices with positive curvature in a planar

graph with non-negative curvature is a finite set. Hence, the supremum in

(1.2.5) is in fact the maximum.
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Theorem 1.2.1 (Chen and Chen) For any G ∈ PC≥0, TG is a finite set.

This result makes our combinatorial setting distinguished from the

Riemannian setting. Note that there are many non-compact convex surfaces

with positive curvature everywhere, e.g., the elliptic paraboloid, i.e., the

revolution surface of the graph y = x2 with respect to the z axis in R
3.

Moreover, if the maximal facial degree DG of G ∈ PC≥0 is at least 43,

then G has rather special structure, analogous to the prisms or antiprisms in

the finite case (see [HJL15] or Theorem 1.3.2 in this chapter). In that case,

one gets �(G) = 1. Hence, for our purposes to understand the set (1.2.3), it

suffices to consider planar graphs G with DG ≤ 42. Note that there are finitely

many vertex patterns, consisting of faces of degree at most 42, with positive

curvature (see Table 1.1 in the Appendix). Then one is ready to see that the set

(1.2.3) is a discrete subset in [0, 1] (see, e.g., [HS17b, Proposition 2.3]).

T. Réti [HL16, Conjecture 2.1] was motivated to determine the following

value

τ1 := inf
{

�(G) : G ∈ PC≥0,�(G) > 0
}

,

which is called the first gap of total curvature for infinite planar graphs in the

class of PC≥0. He suggested that τ1 = 1
6

and the minimum is attained by the

graph consisting of a pentagon and infinitely many hexagons, which is a kind

of infinite fullerene (see Figure 1.1). In [HS17a], we give an answer to Réti’s

problem.

Theorem 1.2.2 (Theorem 1.3 in [HS17a])

τ1 =
1

12
.

A planar graph G ∈ PC≥0 satisfies �(G) = 1
12

if and only if the polyhedral

surface S(G) is isometric to either

(a) a cone with the apex angle θ = 2 arcsin 11
12

, or

(b) a ‘frustum’ with a hendecagon base (see Figure 1.3).

The proof strategy is straightforward and involves tedious case studies. For

a vertex with positive curvature, if the curvature of the vertex is less than 1
12

,

then we try to find some nearby vertices with positive curvature such that the

sum of these curvatures is at least 1
12

and prove the results case by case. Note

that there are examples of graphs in PC≥0 whose total curvature attains the

first gap 1
12

(see Figure 1.4 and [HS17a] for more examples). Although graph

structures of infinite planar graphs attaining the first gap of total curvature

could be as complicated as planar tilings (see [HS17a]) we are able to classify
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Figure 1.3 A ‘frustum’ with a hendecagon base

A
A

B

B

Figure 1.4 This is an example of total curvature 1
12

, where the half lines with

same labels, A or B, are identified

metric structures of polyhedral surfaces for such planar graphs in the above

theorem.

Inspired by Réti’s question, it will be interesting to know other values

in the set (1.2.3). Using Chen and Chen’s result, Theorem 1.2.1, and the

Gauss–Bonnet theorem for compact subsets with boundary, we are able to

determine all possible total curvatures in the class PC≥0.

Theorem 1.2.3 (Theorem 1.1 in [HS17b]) The set of all values of total curva-

ture of infinite planar graphs with non-negative curvature (1.2.3) is given by
{

i

12
: 0 ≤ i ≤ 12, i ∈ Z

}

.

As a corollary, we also obtain that τ1 = 1
12

, which provides an alternative

proof to Réti’s problem. Moreover, as the part of the theorem, one may con-

struct planar graphs with non-negative curvature whose total curvatures attain
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all values listed above (see [HS17b]). We sketch the proof of the theorem as

follows: by Theorem 1.2.1, we know that TG is a finite set. We choose a suf-

ficiently large compact subset K ⊂ S(G), homeomorphic to a closed disc,

such that it contains TG and consists of faces in F. Note that the vertices on the

boundary of K have vanishing curvature, so that their patterns appear in the list

of 17 possible patterns in Table 1.2 in the Appendix. By some combinatorial

restrictions, one can further exclude several patterns from the list and conclude

that any vertex on the boundary is incident to a triangle, a square, a hexagon,

an octagon, or a dodecagon. Then using the Gauss–Bonnet formula on K , we

may prove the theorem. Similar proof strategies apply to the problems on the

total curvature of a planar graph with boundary, i.e., a graph embedded into

the disc or a half plane (see [HS17b]).

Although we crucially use the finiteness structure of TG in the proof of

Theorem 1.2.3, we don’t know much about the structure of the subset TG

which still lies in a black box. By a byproduct of the proof of Theorem

1.2.2, we can show that for G ∈ PC≥0, the induced subgraph on TG has at

most 14 connected components. It was conjecturally at most 12 (see [HS17a,

Conjecture 5.2]).

1.3 The Vertices of Positive Curvature in Planar Graphs

with Non-negative Curvature

In this section, we survey some results on the set of vertices with positive

curvature in planar graphs with non-negative curvature. For any finite (infinite

resp.) G ∈ PC≥0, Alexandrov’s embedding theorem [Ale05] yields that an

isometric embedding of the polyhedral surface S(G) into R
3 as a boundary of

a compact (non-compact resp.) convex polyhedron. The set TG serves as the

set of the vertices/corners of the convex polyhedron, so that much geometric

information of the polyhedron is contained in TG . We are interested in the

structure of the set TG .

By the solution to DeVos and Mohar’s problem [Ghi17], besides the prisms

and antiprisms the largest number of vertices in a finite graph in PC>0 is 208.

We would like to study analogous problems for planar graphs in PC≥0. We

define some analogues to prisms and antiprisms in the class PC≥0.

Definition 1.3.1 We call a planar graph G = (V, E, F) ∈ PC≥0 a prism-like

graph if either

(1) G is an infinite graph and DG ≥ 43, where DG is defined in (1.2.5), or

(2) G is a finite graph and there are at least two faces with facial degree at

least 43.

www.cambridge.org/9781108713184
www.cambridge.org


Cambridge University Press
978-1-108-71318-4 — Analysis and Geometry on Graphs and Manifolds
Edited by Matthias Keller , Daniel Lenz , Radoslaw K. Wojciechowski 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 Bobo Hua and Yanhui Su

σ

Figure 1.5 A half flat-cylinder in R
3

By dividing hexagons into triangles, one may assume that there is no

hexagon in G. Note that ‘prism-like’ graphs have rather special structures

which can be completely determined by the following theorems. For any face

σ, we denote by

∂σ := {x ∈ V : x ≺ σ }

the vertex boundary of σ.

Theorem 1.3.2 ([HJL15]) Let G = (V, E, F) be an infinite planar graph with

non-negative curvature and DG ≥ 43. Then there is only one face σ of degree

at least 43. Suppose that there is no hexagonal face. Then the set of faces F

consists of σ, triangles or squares. Moreover,

F = σ ∪ (∪∞
i=1L i ),

where L i , i ≥ 1, are sets of faces of the same type (triangle or square) which

composite a band, i.e., an annulus, and is defined inductively: L i is the next

layer attaching to the previous layer L i−1 with L0 = {σ }. S(G) is isomet-

ric to the boundary of a half flat-cylinder in R
3 (see Figure 1.5). Moreover,

�(G) = 1.

Theorem 1.3.3 ([HS18]) Let G = (V, E, F) be a finite prism-like graph.

Then there are exactly two disjoint faces σ1 and σ2 of same facial degree at

least 43. Suppose that there is no hexagonal face. Then the set of faces F

consists of σ1 and σ2, triangles, or squares. Moreover,

F = σ1 ∪ (∪M
i=1L i ) ∪ σ2,

where M ≥ 1, and L i , 1 ≤ i ≤ M, are defined similarly as in Theorem 1.3.2.

S(G) is isometric to the boundary of a cylinder barrel in R
3 (see Figure 1.6).

The following problem was proposed in [HL16] as an analogue to DeVos

and Mohar’s problem.
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