
Series and Products in the Development of Mathematics

Volume 1

This is the first volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of *Sources in the Development of Mathematics* adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible even to advanced undergraduate students, discusses the development of the methods in series and products that do not employ complex analytic methods or sophisticated machinery. Volume 2 treats more recent work, including de Branges's solution of Bieberbach's conjecture, and requires more advanced mathematical knowledge.

RANJAN ROY (1947–2020) was the Ralph C. Huffer Professor of Mathematics and Astronomy at Beloit College, where he was a faculty member for 38 years. Roy published papers and reviews on Riemann surfaces, differential equations, fluid mechanics, Kleinian groups, and the development of mathematics. He was an award-winning educator, having received the Allendoerfer Prize, the Wisconsin MAA teaching award, and the MAA Haimo Award for Distinguished Mathematics Teaching and was twice named Teacher of the Year at Beloit College. He coauthored *Special Functions* (2001) with George Andrews and Richard Askey and coauthored chapters in the *NIST Handbook of Mathematical Functions* (2010); he also authored *Elliptic and Modular Functions from Gauss to Dedekind to Hecke* (2017) and the first edition of this book, *Sources in the Development of Mathematics* (2011).

Ranjan Roy 1948-2020

Series and Products in the Development of Mathematics

Second Edition

Volume 1

RANJAN ROY Beloit College

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108709453 DOI: 10.1017/9781108627702

> First edition © Ranjan Roy 2011 Second edition © Ranjan Roy 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published as *Sources in the Development of Mathematics*, 2011 Second edition 2021

A catalogue record for this publication is available from the British Library

ISBN 2-Volume Set 978-1-108-70943-9 Paperback ISBN Volume 1 978-1-108-70945-3 Paperback ISBN Volume 2 978-1-108-70937-8 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Contents of Volume 2			<i>page</i> xiii
Pref	ace		xvii
1	Powe	r Series in Fifteenth-Century Kerala	1
	1.1	Preliminary Remarks	1
	1.2	Transformation of Series	5
	1.3	Jyesthadeva on Sums of Powers	6
	1.4	Arctangent Series in the Yuktibhasa	8
	1.5	Derivation of the Sine Series in the Yuktibhasa	10
	1.6	Continued Fractions	15
	1.7	Exercises	20
	1.8	Notes on the Literature	21
2	Sums	of Powers of Integers	23
	2.1	Preliminary Remarks	23
	2.2	Johann Faulhaber	27
	2.3	Fermat	28
	2.4	Pascal	30
	2.5	Seki and Jakob Bernoulli on Bernoulli Numbers	31
	2.6	Jakob Bernoulli's Polynomials	33
	2.7	Euler	37
	2.8	Lacroix's Proof of Bernoulli's Formula	40
	2.9	Jacobi on Faulhaber	42
	2.10	Jacobi and Raabe on Bernoulli Polynomials	43
	2.11	Ramanujan's Recurrence Relations for Bernoulli Numbers	48
	2.12	Notes on the Literature	53
3	Infini	te Product of Wallis	54
	3.1	Preliminary Remarks	54
	3.2	Wallis's Infinite Product for π	59
	3.3	Brouncker and Infinite Continued Fractions	61

Cambridge University Press 978-1-108-70945-3 — Series and Products in the Development of Mathematics Vol 1, 2nd ed.
Ranjan Roy
Frontmatter
More Information

vi		Contents	
	3.4	Méray and Stieltjes: The Probability Integral	64
	3.5	Euler: Series and Continued Fractions	67
	3.6	Euler: Riccati's Equation and Continued Fractions	72
	3.7	Exercises	75
	3.8	Notes on the Literature	76
4	The E	Binomial Theorem	77
	4.1	Preliminary Remarks	77
	4.2	Landen's Derivation of the Binomial Theorem	89
	4.3	Euler: Binomial Theorem for Rational Exponents	90
	4.4	Cauchy: Proof of the Binomial Theorem for Real Exponents	94
	4.5	Abel's Theorem on Continuity	96
	4.6	Harkness and Morley's Proof of the Binomial Theorem	100
	4.7	Exercises	101
	4.8	Notes on the Literature	103
5	The R	Rectification of Curves	105
	5.1	Preliminary Remarks	105
	5.2	Descartes's Method of Finding the Normal	107
	5.3	Hudde's Rule for a Double Root	109
	5.4	Van Heuraet's Letter on Rectification	110
	5.5	Newton's Rectification of a Curve	112
	5.6	Leibniz's Derivation of the Arc Length	113
	5.7	Exercises	113
	5.8	Notes on the Literature	114
6	Inequ	alities	116
	6.1	Preliminary Remarks	116
	6.2	Harriot's Proof of the Arithmetic and Geometric Means Inequality	122
	6.3	Maclaurin's Inequalities	124
	6.4	Comments on Newton's and Maclaurin's Inequalities	125
	6.5	Rogers	127
	6.6	Hölder	130
	6.7	Jensen's Inequality	134
	6.8	Riesz's Proof of Minkowski's Inequality	135
	6.9	Exercises	137
	6.10	Notes on the Literature	142
7		Calculus of Newton and Leibniz	143
	7.1	Preliminary Remarks	143
	7.2	Newton's 1671 Calculus Text	147
	7.3	Leibniz: Differential Calculus	150
	7.4	Leibniz on the Catenary	153
	7.5	Johann Bernoulli on the Catenary	156
	7.6	Johann Bernoulli: The Brachistochrone	157
	7.7	Newton's Solution to the Brachistochrone	158
	7.8	Newton on the Radius of Curvature	161

Cambridge University Press 978-1-108-70945-3 — Series and Products in the Development of Mathematics Vol 1, 2nd ed.
Ranjan Roy
Frontmatter
More Information

		Contents	vii
	7.9	Johann Bernoulli on the Radius of Curvature	162
	7.10	Exercises	163
	7.11	Notes on the Literature	164
8	De An	alysi per Aequationes Infinitas	165
	8.1	Preliminary Remarks	165
	8.2	Algebra of Infinite Series	168
	8.3	Newton's Polygon	171
	8.4	Newton on Differential Equations	172
	8.5	Newton's Earliest Work on Series	174
	8.6	De Moivre on Newton's Formula for $\sin n\theta$	176
	8.7	Stirling's Proof of Newton's Formula	177
	8.8	Zolotarev: Lagrange Inversion with Remainder	179
	8.9	Exercises	181
	8.10	Notes on the Literature	183
9	Finite	Differences: Interpolation and Quadrature	186
	9.1	Preliminary Remarks	186
	9.2	Newton: Divided Difference Interpolation	193
	9.3	Gregory–Newton Interpolation Formula	198
	9.4	Waring, Lagrange: Interpolation Formula	199
	9.5	Euler on Interpolation	201
	9.6	Cauchy, Jacobi: Waring–Lagrange Interpolation Formula	202
	9.7	Newton on Approximate Quadrature	204
	9.8	Hermite: Approximate Integration	207
	9.9	Chebyshev on Numerical Integration	209
	9.10	Exercises	211
	9.11	Notes on the Literature	212
10		Transformation by Finite Differences	213
	10.1	Preliminary Remarks	213
	10.2	Newton's Transformation	219
	10.3	Montmort's Transformation	220
	10.4	Euler's Transformation Formula	222
	10.5	Stirling's Transformation Formulas	225
	10.6	Nicole's Examples of Sums	229
	10.7	Stirling Numbers	233
	10.8	Lagrange's Proof of Wilson's Theorem	241
	10.9	Taylor's Summation by Parts	242
	10.10	Exercises	244
	10.11	Notes on the Literature	246
11	The T	aylor Series	247
	11.1	Preliminary Remarks	247
	11.2	Gregory's Discovery of the Taylor Series	256
	11.3	Newton: An Iterated Integral as a Single Integral	258
	11.4	Bernoulli and Leibniz: A Form of the Taylor Series	259

viii

11.5 Taylor and Euler on the Taylor Series 261 11.6 Lacroix on D'Alembert's Derivation of the Remainder 262 11.7 Lagrange's Derivation of the Remainder Term 264 Laplace's Derivation of the Remainder Term 11.8 266 11.9 Cauchy on Taylor's Formula and l'Hôpital's rule 267 11.10 Cauchy: The Intermediate Value Theorem 270 11.11 Exercises 271 11.12 Notes on the Literature 272 12 Integration of Rational Functions 273 12.1 Preliminary Remarks 273 12.2 Newton's 1666 Basic Integrals 280 12.3 Newton's Factorization of $x^n \pm 1$ 282 12.4 Cotes and de Moivre's Factorizations 284 12.5 **Euler: Integration of Rational Functions** 286 12.6 Euler's "Investigatio Valoris Integralis" 293 12.7 Hermite's Rational Part Algorithm 299 12.8 Johann Bernoulli: Integration of $\sqrt{ax^2 + bx + c}$ 301 12.9 Exercises 302 12.10 Notes on the Literature 305 306 13 **Difference Equations** 13.1 Preliminary Remarks 306 13.2 De Moivre on Recurrent Series 308 13.3 Simpson and Waring on Partitioning Series 311 13.4 Stirling's Method of Ultimate Relations 317 13.5 Daniel Bernoulli on Difference Equations 319 13.6 Lagrange: Nonhomogeneous Equations 322 13.7 Laplace: Nonhomogeneous Equations 325 13.8 Exercises 326 13.9 Notes on the Literature 327 14 **Differential Equations** 328 Preliminary Remarks 14.1 328 14.2 Leibniz: Equations and Series 338 14.3 Newton on Separation of Variables 340 Johann Bernoulli's Solution of a First-Order Equation 14.4 341 14.5 Euler on General Linear Equations with Constant Coefficients 343 14.6 Euler: Nonhomogeneous Equations 345 14.7 Lagrange's Use of the Adjoint 350 14.8 Jakob Bernoulli and Riccati's Equation 352 14.9 **Riccati's Equation** 353 14.10 Singular Solutions 354 14.11 Mukhopadhyay on Monge's Equation 358 14.12 Exercises 360 14.13 Notes on the Literature 363

Contents

		Contents	ix
15	Series	and Products for Elementary Functions	365
	15.1	Preliminary Remarks	365
	15.2	Euler: Series for Elementary Functions	368
	15.3	Euler: Products for Trigonometric Functions	370
	15.4	Euler's Finite Product for $\sin nx$	372
	15.5	Cauchy's Derivation of the Product Formulas	374
	15.6	Euler and Niklaus I Bernoulli: Partial Fraction Expansions	378
	15.7	Euler: Logarithm	381
	15.8	Euler: Dilogarithm	384
	15.9	Spence: Two-Variable Dilogarithm Formula	386
	15.10	Schellbach: Products to Series	388
	15.11	Exercises	392
	15.12	Notes on the Literature	395
16	Zeta V	Values	396
	16.1	Preliminary Remarks	396
	16.2	Euler's First Evaluation of $\sum \frac{1}{n^{2k}}$	403
	16.3	Euler: Bernoulli Numbers and $\sum_{k=1}^{\infty} \left(\frac{1}{n}\right)^{2k}$ Euler's Evaluation of Some <i>L</i> -Series Values by Partial Fractions	404
	16.4	Euler's Evaluation of Some L-Series Values by Partial Fractions	406
	16.5	Euler's Evaluation of $\sum \frac{1}{n^2}$ by Integration	407
	16.6	N. Bernoulli's Evaluation of $\sum \frac{1}{(2n+1)^2}$	410
	16.7	Euler and Goldbach: Double Zeta Values	411
	16.8	Secant and Tangent Numbers and $\zeta(2m)$	416
	16.9	Landen and Spence: Evaluation of $\zeta(2k)$	420
	16.10	Exercises	432
17	The G	amma Function	436
	17.1	Preliminary Remarks	436
	17.2	Stirling: $\Gamma(\frac{1}{2})$ by Newton–Bessel Interpolation	444
	17.3	Euler's Integral for the Gamma Function	446
	17.4	Euler's Evaluation of the Beta Integral	449
	17.5	Newman and the Product for $\Gamma(x)$	455
	17.6	Gauss's Theory of the Gamma Function	459
	17.7	Euler: Series to Product	463
	17.8	Euler: Products to Continued Fractions	465
	17.9	5 1	469
		Poisson, Jacobi, and Dirichlet: Beta Integrals	470
		The Volume of an <i>n</i> -Dimensional Ball	473
		The Selberg Integral	476
		Good's Proof of Dyson's Conjecture	484
		Bohr, Mollerup, and Artin on the Gamma Function	486
		Kummer's Fourier Series for ln $\Gamma(x)$	489
		Exercises	491
	17.17	Notes on the Literature	499

Cambridge University Press 978-1-108-70945-3 — Series and Products in the Development of Mathematics Vol 1, 2nd ed. Ranjan Roy Frontmatter <u>More Information</u>

х		Contents	
18	18.1 18.2 18.3 18.4 18.5	symptotic Series for $\ln \Gamma(x)$ Preliminary Remarks De Moivre's Asymptotic Series Stirling's Asymptotic Series Binet's Integrals for $\ln \Gamma(x)$ Cauchy's Proof of the Asymptotic Character of de Moivre's Series Exercises Notes on the Literature	500 500 506 509 514 517 520 523
19	19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9	r Series Preliminary Remarks Euler: Trigonometric Expansion of a Function Lagrange on the Longitudinal Motion of the Loaded Elastic String Euler on Fourier Series Fourier and Linear Equations in Infinitely Many Unknowns Dirichlet's Proof of Fourier's Theorem Dirichlet: On the Evaluation of Gauss Sums Schaar: Reciprocity of Gauss Sums Exercises Notes on the Literature	524 524 531 532 536 537 543 543 548 552 554 555
20	20.1 20.2 20.3 20.4 20.5 20.6 20.7	uler–Maclaurin Summation Formula Preliminary Remarks Euler on the Euler–Maclaurin Formula Maclaurin's Derivation of the Euler–Maclaurin Formula Poisson's Remainder Term Jacobi's Remainder Term Bernoulli Polynomials Number Theoretic Properties of Bernoulli Numbers Exercises Notes on the Literature	556 556 563 569 573 579 586 591 595
21	21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 21.9 21.10 21.11 21.12	tor Calculus and Algebraic Analysis Preliminary Remarks Euler's Solution of a Difference Equation Lagrange's Extension of the Euler–Maclaurin Formula Français's Method of Solving Differential Equations Herschel: Calculus of Finite Differences Murphy's Theory of Analytical Operations Duncan Gregory's Operational Calculus Boole's Operational Calculus Jacobi and the Symbolic Method Cartier: Gregory's Proof of Leibniz's Rule Hamilton's Algebra of Complex Numbers and Quaternions Exercises Notes on the Literature	596 596 605 608 614 616 618 621 624 628 630 631 636 638

	Contents	xi
22	Trigonometric Series after 1830	639
	22.1 Preliminary Remarks	639
	22.2 The Riemann Integral	642
	22.3 Smith: Revision of Riemann and Discovery of the Cantor S	
	22.4 Riemann's Theorems on Trigonometric Series	645
	22.5 The Riemann–Lebesgue Lemma	649
	22.6 Schwarz's Lemma on Generalized Derivatives	649
	22.7 Cantor's Uniqueness Theorem	650
	22.8 Exercises	652
	22.9 Notes on the Literature	656
23	The Hypergeometric Series	657
	23.1 Preliminary Remarks	657
	23.2 Euler's Derivation of the Hypergeometric Equation	666
	23.3 Pfaff's Derivation of the ${}_{3}F_{2}$ Identity	667
	23.4 Gauss's Contiguous Relations and Summation Formula	669
	23.5 Gauss's Proof of the Convergence of $F(a, b, c, x)$.
	for $c - a - b > 0$	670
	23.6 Raabe's Test for Convergence	672
	23.7 Gauss's Continued Fraction	674
	23.8 Gauss: Transformations of Hypergeometric Functions	675
	23.9 Kummer's 1836 Paper on Hypergeometric Series	678
	23.10 Jacobi's Solution by Definite Integrals	679
	23.11 Riemann's Theory of Hypergeometric Functions23.12 Exercises	681 684
	23.12 Exercises 23.13 Notes on the Literature	684 687
24	Orthogonal Polynomials	688
	24.1 Preliminary Remarks	688
	24.2 Legendre's Proof of the Orthogonality of His Polynomials	692
	24.3 Gauss on Numerical Integration	693
	24.4 Jacobi's Commentary on Gauss	697
	24.5 Murphy and Ivory: The Rodrigues Formula	698
	24.6 Liouville's Proof of the Rodrigues Formula	700
	24.7 The Jacobi Polynomials	702
	24.8 Stieltjes: Zeros of Jacobi Polynomials	706
	24.9 Askey: Discriminant of Jacobi Polynomials	709
	24.10 Chebyshev: Discrete Orthogonal Polynomials24.11 Chebyshev and Orthogonal Matrices	712 716
	24.11 Chebyshev's Discrete Legendre and Jacobi Polynomials	
	24.12 Chebysnev's Discrete Legendre and Jacobi Polynomiais 24.13 Exercises	716 718
	24.13 Exercises 24.14 Notes on the Literature	718
		720
Bib	liography	721
Inde		750

Contents of Volume 2

Preface			<i>page</i> xvii
25	q-Series		1
	25.1	Preliminary Remarks	1
	25.2	Jakob Bernoulli's Theta Series	7
	25.3	Euler's q-Series Identities	8
	25.4	Euler's Pentagonal Number Theorem	9
	25.5	Gauss: Triangular and Square Numbers Theorem	13
	25.6	Gauss Polynomials and Gauss Sums	15
	25.7	Gauss's q-Binomial Theorem and the Triple Product Identity	20
	25.8	Jacobi: Triple Product Identity	22
	25.9	Eisenstein: q-Binomial Theorem	24
	25.10	Jacobi's q-Series Identity	25
	25.11	Cauchy and Ramanujan: The Extension of the Triple Product	27
	25.12	Rodrigues and MacMahon: Combinatorics	28
	25.13	Exercises	30
	25.14	Notes on the Literature	32
26	Partiti	ons	33
	26.1	Preliminary Remarks	33
	26.2	Sylvester on Partitions	45
	26.3	Cayley: Sylvester's Formula	50
	26.4	Ramanujan: Rogers-Ramanujan Identities	52
	26.5	Ramanujan's Congruence Properties of Partitions	54
	26.6	Exercises	58
	26.7	Notes on the Literature	60
27	q-Seri	es and q-Orthogonal Polynomials	61
	27.1	Preliminary Remarks	61
	27.2	Heine's Transformation	70

Cambridge University Press	
978-1-108-70945-3 — Series and Products in the Development of Mathematics Vol 1, 2nd ed.	
• • • • • •	
Ranjan Roy	
Frontmatter	
<u>More Information</u>	

xiv		Contents of Volume 2	
	27.3	Rogers: Threefold Symmetry	72
	27.3	Rogers: Rogers–Ramanujan Identities	75
	27.5	Rogers: "Third Memoir"	80
	27.6	Rogers–Szegő Polynomials	82
	27.7	Feldheim and Lanzewizky: Orthogonality of <i>q</i> -Ultraspherical	-
		Polynomials	83
	27.8	Exercises	88
	27.9	Notes on the Literature	90
28	Diricl	nlet L-Series	91
	28.1	Preliminary Remarks	91
	28.2	-	94
	28.3	Eisenstein's Proof of the Functional Equation	98
	28.4	Riemann's Derivations of the Functional Equation	99
	28.5	Euler's Product for $\sum \frac{1}{n^s}$	102
	28.6	Dirichlet Characters	103
29	Prime	es in Arithmetic Progressions	106
	29.1	Preliminary Remarks	106
	29.2	Euler: Sum of Prime Reciprocals	109
	29.3	Dirichlet: Infinitude of Primes in an Arithmetic Progression	110
	29.4	Class Number and $L_{\chi}(1)$	114
	29.5	Vallée-Poussin's Complex Analytic Proof of $L_{\chi}(1) \neq 0$	116
	29.6	Gelfond and Linnik: Proof of $L_{\chi}(1) \neq 0$	117
	29.7	Monsky's Proof That $L_{\chi}(1) \neq 0$	119
	29.8	Exercises	120
	29.9	Notes on the Literature	121
30		bution of Primes: Early Results	122
	30.1	Preliminary Remarks	122
	30.2	Chebyshev on Legendre's Formula	129
	30.3	Chebyshev's Proof of Bertrand's Conjecture	133
	30.4	De Polignac's Evaluation of $\sum_{p \le x} \frac{\ln p}{p}$	139
	30.5	Mertens's Evaluation of $\prod_{p \le x} \left(1 - \frac{1}{p}\right)^{-1}$	140
	30.6	Riemann's Formula for $\pi(x)$	144
	30.7	Exercises	147
	30.8	Notes on the Literature	149
31	Invari	ant Theory: Cayley and Sylvester	150
	31.1	Preliminary Remarks	150
	31.2	Boole's Derivation of an Invariant	160
	31.3	Differential Operators of Cayley and Sylvester	164
	31.4	Cayley's Generating Function for the Number of Invariants	168
	31.5	Sylvester's Fundamental Theorem of Invariant Theory	172
	31.6	Hilbert's Finite Basis Theorem	175
	31.7	Hilbert's Nullstellensatz	178

		Contents of Volume 2	XV
	31.8	Exercises	179
	31.9	Notes on the Literature	180
32	Summ	ability	181
	32.1	Preliminary Remarks	181
	32.2	Fejér: Summability of Fourier Series	194
	32.3	Karamata's Proof of the Hardy–Littlewood Theorem	197
	32.4	Wiener's Proof of Littlewood's Theorem	199
	32.5	Hardy and Littlewood: The Prime Number Theorem	200
	32.6	Wiener's Proof of the PNT	202
	32.7	Kac's Proof of Wiener's Theorem	206
		Gelfand: Normed Rings	208
		Exercises	210
	32.10	Notes on the Literature	212
33	Ellipti	c Functions: Eighteenth Century	213
		Preliminary Remarks	213
		Fagnano Divides the Lemniscate	223
		Euler: Addition Formula	226
	33.4		228
	33.5	Lagrange, Gauss, Ivory on the agM	231
	33.6	Remarks on Gauss and Elliptic Functions	239
		Exercises	251
	33.8	Notes on the Literature	253
34	-	c Functions: Nineteenth Century	255
	34.1	Preliminary Remarks	255
	34.2	Abel: Elliptic Functions	260
	34.3	Abel: Infinite Products	263
	34.4	Abel: Division of Elliptic Functions and Algebraic Equations	267
	34.5	Abel: Division of the Lemniscate	271
	34.6	Jacobi's Elliptic Functions	273
	34.7	Jacobi: Cubic and Quintic Transformations	276 281
	34.8 34.9	Jacobi's Transcendental Theory of Transformations	281 287
		Jacobi: Infinite Products for Elliptic Functions Jacobi: Sums of Squares	287 291
		Cauchy: Theta Transformations and Gauss Sums	291 294
		Eisenstein: Reciprocity Laws	294 297
		Liouville's Theory of Elliptic Functions	303
		Hermite's Theory of Elliptic Functions	309
		Exercises	314
		Notes on the Literature	317
35	Irratio	nal and Transcendental Numbers	318
55	35.1	Preliminary Remarks	318
	35.2	Liouville Numbers	331
	35.3	Hermite's Proof of the Transcendence of <i>e</i>	333

xvi

Cambridge University Press 978-1-108-70945-3 — Series and Products in the Development of Mathematics Vol 1, 2nd ed.
Ranjan Roy
Frontmatter
More Information

		Hilbert's Proof of the Transcendence of <i>e</i>	337
		Exercises	339
	35.6	Notes on the Literature	340
36	Value Distribution Theory		
	36.1	Preliminary Remarks	341
	36.2	Jacobi on Jensen's Formula	347
	36.3	Jensen's Proof	349
	36.4	Bäcklund Proof of Jensen's Formula	350
	36.5	R. Nevanlinna's Proof of the Poisson–Jensen Formula	351
	36.6	Nevanlinna's First Fundamental Theorem	353
	36.7	Nevanlinna's Factorization of a Meromorphic Function	356
	36.8	Picard's Theorem	357
	36.9	Borel's Theorem	358
	36.10	Nevanlinna's Second Fundamental Theorem	359
	36.11	Exercises	360
	36.12	Notes on the Literature	362
37	Univalent Functions		
	37.1	Preliminary Remarks	363
	37.2	Gronwall: Area Inequalities	372
	37.3	Bieberbach's Conjecture	373
	37.4	Littlewood: $ a_n \leq en$	375
	37.5	Littlewood and Paley on Odd Univalent Functions	376
	37.6	Karl Löwner and the Parametric Method	378
	37.7	De Branges: Proof of Bieberbach	381
	37.8	Exercises	385
	37.9	Notes on the Literature	386
38	Finite Fields		
	38.1	Preliminary Remarks	387
		Euler's Proof of Fermat's Little Theorem	390
	38.3	Gauss's Proof That \mathbb{Z}_p^{\times} Is Cyclic	391
	38.4	Gauss on Irreducible Polynomials Modulo a Prime	392
	38.5	Galois on Finite Fields	395
	38.6	Dedekind's Formula	398
	38.7	Finite Field Analogs of the Gamma and Beta Integrals	399
	38.8	Weil: Solutions of Equations in Finite Fields	407
	38.9	Exercises	420
		Notes on the Literature	421
D.1.			422
	Bibliography		
Index			451

Contents of Volume 2

Preface

Sources in the Development of Mathematics: Series and Products from the Fifteenth to the Twenty-first Century, my book of 2011, was intended for an audience of graduate students or beyond. However, since much of its mathematics lies at the foundations of the undergraduate mathematics curriculum, I decided to use portions of my book as the text for an advanced undergraduate course. I was very pleased to find that my curious and diligent students, of varied levels of mathematical talent, could understand a good bit of the material and get insight into mathematics they had already studied as well as topics with which they were unfamiliar. Of course, the students could profitably study such topics from good textbooks. But I observed that when they read original proofs, perhaps with gaps or with slightly opaque arguments, students gained very valuable insight into the process of mathematical thinking and intuition. Moreover, the study of the steps, often over long periods of time, by which earlier mathematicians refined and clarified their arguments revealed to my students the essential points at the crux of those results, points that may be more difficult to discern in later streamlined presentations. As they worked to understand the material, my students witnessed the difficulty and beauty of original mathematical work, and this was a source of great enjoyment to many of them. I have now thrice taught this course, with extremely positive student response.

In order for my students to follow the foundational mathematical arguments in *Sources*, I was often required to provide additional material, material actually contained in the original works of the mathematicians being studied. I therefore decided to expand my book, as a second edition in two volumes, to make it more accessible to readers, from novices to accomplished mathematicians. This second edition contains about 250 pages of new material, including more details within the original proofs, elaborations and further developments of results, and additional results that may give the reader a better perspective. Furthermore, to give the material greater focus, I have limited this second edition to the topics of series and products, areas that today permeate both applied and pure mathematics; the second edition is thus entitled *Series and Products in the Development of Mathematics*.

Cambridge University Press 978-1-108-70945-3 — Series and Products in the Development of Mathematics Vol 1, 2nd ed. Ranjan Roy Frontmatter <u>More Information</u>

xviii

Preface

This first volume of my work discusses the development of the fundamental though powerful and essential methods in series and products that do not employ complex analytic methods or sophisticated machinery such as Fourier transforms. Much of this material would be accessible, perhaps with guidance, to advanced undergraduate students. The second volume deals with more recent work and requires considerable mathematical background. For example, in volume 2, I discuss Weil's 1949 paper on solutions of equations in finite fields and de Branges's conquest of the Bieberbach conjecture. Each volume contains the same complete bibliography.

The exercises at the end of the chapters present many additional original results and may be studied simply for the supplementary theorems they contain. The exercises are accompanied by references to the original works, as an aid to further research. Readers may attempt to prove the results in the problems and, by use of the references, compare their own solutions with the originals. Moreover, many of the exercises can be tackled by methods similar to those given in the text, so that some exercises can be realistically assigned to a class as homework. I assigned many exercises to my classes, and found that the students enjoyed and benefited from their efforts to find solutions. Thus, the exercises may be useful as problems to be solved, and also for the results they present.

Detailed study of original mathematical works provides a point of entry into the minds of the creators of powerful theories, and thus into the theories themselves. But tracing the discovery and evolution of mathematical ideas and theorems entails the examination of many, many papers, letters, notes, and monographs. For example, in this work I have discussed the work of more than three hundred mathematicians, including arguments and theorems contained in approximately one hundred works and letters of Euler alone. Locating, studying, and grasping the interconnections among such original works and results is a ponderous, complex, and rewarding effort. In this second edition, I have added numerous footnotes and almost five hundred works to the bibliography. My hope is that the detailed footnotes and the expanded bibliography, containing both original works and works of distinguished expositors and historians of mathematics, may encourage and facilitate the efforts of those who wish to search out and study the original sources of our inherited mathematical wealth.

I first wish to thank my wife, who typeset and edited this work, made innumerable corrections and refinements to the text, and devotedly assisted me with translations and locating references. I am also very grateful to NFN Kalyan for his encouragement and for creating the eloquent artwork for the cover of these volumes. I greatly appreciate Maitreyi Lagunas's unflagging support and interest. I thank Bruce Atwood who cheerfully constructed the nice diagrams contained in this work, and Paul Campbell who generously provided expert technical support and advice. I am grateful to my student Shambhavi Upadhyaya, who has an unusual ability to proofread very accurately, for spending so much time giving useful suggestions for improvement. I am indebted to my students whose questions and enthusiasm helped me refine this second edition. I also thank the very capable librarians at Beloit College, especially Chris Nelson and Cindy Cooley. Finally, I wish to acknowledge the inspiration provided me by my friend, the late Dick Askey.