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INTRODUCTION TO VOLUME II

T. J. HAINES AND M. HARRIS

The present volume is the second in a series of collections of mainly expository articles on

the arithmetic theory of automorphic forms. The books are primarily intended for two groups

of readers. The first group is interested in the structure of automorphic forms on reductive

groups over number fields, and specifically in qualitative information about the multiplicities

of automorphic representations. The second group is interested in the problem of classifying

l-adic representations of Galois groups of number fields. Langlands’ conjectures elaborate

on the notion that these two problems overlap to a considerable degree. The goal of this

series of books is to gather into one place much of the evidence that this is the case, and to

present it clearly and succinctly enough so that both groups of readers are not only convinced

by the evidence but can pass with minimal effort between the two points of view.

The first volume mainly dealt with the mechanics of the stable trace formula, with special

emphasis on the role of the Fundamental Lemma, whose proof had recently appeared.

The present volume is largely concerned with application of the methods of arithmetic

geometry to the theory of Shimura varieties. The primary motivation, in both cases, is

the construction of the compatible families of ℓ-adic Galois representations attached to

cohomological automorphic representations π of GL(n) over totally imaginary quadratic

extensions of totally real number fields – CM fields, in other words. These are the Galois

representations that allow the most direct generalizations of methods developed for the

study of the arithmetic of elliptic curves over Q. This is one reason they have increasingly

attracted the attention of algebraic number theorists. The latter belong to the second group

of readers to whom this book is addressed.

Most of the Galois representations that can be attached to automorphic representations are

realized in the ℓ-adic cohomology of Shimura varieties, with coefficients in local systems.

The Shimura varieties to be considered in this book are attached to unitary similitude groups;

they belong to the class of PEL Shimura varieties, the first large family of locally symmetric

varieties studied by Shimura in his long series of papers in the early 1960s. The abbreviation

stands for Polarization-Endomorphisms-Level; like the other PEL Shimura varieties, the

ones studied here are moduli spaces of polarized abelian varieties of a fixed dimension,

together with an algebra of endomorphisms and a fixed level structure, all of which have to

satisfy certain compatibilities. If one drops the endomorphisms one is left with the moduli

space of polarized abelian varieties of fixed dimension g with level structure, in other words

with the familiar Siegel moduli space. This is the Shimura variety attached to the group

GSp(2g) of similitudes of a 2g-dimensional vector space endowed with a non-degenerate
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2 Introduction to Volume II

alternating form. The decision to focus instead on unitary similitude groups was dictated

by the close relation between GL(n) and unitary groups, which is responsible for the role

of the Shimura varieties considered here in the construction of the Galois representations

attached to GL(n) over a totally real or CM field. A detailed treatment of Siegel modular

varieties can be found in Morel’s two articles [M08, M11].

The Shimura varieties considered in this book are all proper as complex algebraic vari-

eties; the corresponding unitary similitude groups are anisotropic modulo center. This choice

is sufficient in order to attach Galois representations to the automorphic representations that

contribute to the cohomology1 of the adèlic locally symmetric space attached to GL(n). The

Galois representations discussed in chapters 8-11 of this Volume, and in Chapter CHL.IV.C

of Volume 1, are directly attached to the polarized cohomological cuspidal automorphic

representations of GL(n); these are the ones that admit descents to unitary groups. Galois

representations can also be attached to cuspidal automorphic representations of GL(n)

that are cohomological but not polarized [HLTT, Sch, B]; their construction is based on

techniques from p-adic geometry that are beyond the scope of the present volume.

A. Zeta functions of unitary Shimura varieties

Let K be a totally imaginary quadratic extension of a totally real field F. Let (V, [·, ·]) be

a non-degenerate hermitian space for K/F, i.e., V is an n-dimensional K-vector space and

[·, ·] is a c-sesquilinear form satisfying [x, y] = c([y, x]) for all x, y ∈ V . Let GU (V ) denote

the group of similitudes of (V, [·, ·]), and let G ⊂ GU (V ) be the subgroup of similitudes with

rational similitude factor, defined as in the chapters of Genestier-Ngô, Nicole, Rozensztajn,

and Zhu. This is viewed as an algebraic group overQ. Let K f ⊂ G(A f ) be an open compact

subgroup, and let K∞ ⊂ G(R) be a maximal connected subgroup that contains the center

of G(R) and is compact modulo the center. Then X := G(R)/K∞ is the union of finitely

many copies of a hermitian symmetric domain, and the double coset space

G(Q)\G(A)/K∞ × K f

can be identified with the set of points of a complex quasi-projective variety Sh(G, X )K f
. In

Chapter 1 and (in more detail) in Chapter 2, it is explained that X is endowed with a canonical

structure, following Deligne, that does not depend on the choice of K∞, and the Shimura

variety Sh(G, X )K f
has a model over the reflex field E, a number field determined by the pair

(G, X ) and contained in the Galois closure of K over Q. This model identifies Sh(G, X )K f

with (a part of) the moduli space of quadruples (A, ι, λ, η̄), where A is an abelian variety

of dimension n, λ is a polarization of A, ι is an action of an appropriate order in K on A,

and η̄ is a level structure depending on K f . The quadruple (A, ι, λ, η̄) are moreover required

to satisfy certain compatibilities that were introduced by Shimura in his definition of PEL

types (for Polarization, Endomorphism, Level); we refer the reader to Chapter 2 for details.

We always assume that the derived subgroup Gder ⊂ G is an anisotropic, which

equivalent to the condition [x, x] � 0 for all x ∈ V \ {0}. If n > 2, this is equivalent

1Here and below, by cohomology of a locally symmetric space we will understand the cohomology with

coefficients in local systems attached to algebraic representations of the corresponding reductive group.
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to the condition that, for some complex embedding τ : K →֒ C, the induced hermitian

form on V ⊗K,τ C is positive- or negative-definite. Under this hypothesis, it is a well-known

theorem of Borel and Harish-Chandra that the double coset space G(Q)\G(A)/K∞ × K f is

a compact complex variety, and thus the Shimura variety Sh(G, X )K f
is projective.

Suppose the group G is unramified at p; in other words, it is quasi-split over Qp and

splits over an unramified extension of Qp . Then G(Qp) contains a hyperspecial maximal

compact subgroup given as the stabilizer of some Λ ⊂ V (Qp), a lattice that is self-dual

relative to [·, ·]. We suppose that K f = Kp × K p where Kp is such a hyperspecial maximal

compact subgroup of G(Qp); moreover, we suppose that K p is a sufficiently small compact

open subgroup of the adeles ofQ away from p. In Chapter 3 it is explained that the Shimura

variety Sh(G, X )K f
then has a smooth model SK p over the integers Op in the completion

of E at any p-adic place p; moreover, under our hypothesis that Gder is anisotropic, it is

known that SK p is projective over Op.

Remark. (Contributed by Y. Zhu) For the smooth quasi-projective integral model of the

PEL Shimura variety considered by Kottwitz (at a hyperspecial prime), it is known that it is

projective if and only if Gder is anisotropic over Q. A special case of this assertion, when

EndB (V ) is a division algebra, is proved by Kottwitz on p. 392 of [K92a]. The general

case follows from the main results of Lan’s thesis [Lan13]. In fact, Lan constructs smooth

projective toroidal compactifications of the integral model, whose boundary strata are also

smooth, see [Lan13, Theorem 4.1.1.1, Theorem 7.3.3.4]. Thus the projectivity of Kottwitz’s

integral model is equivalent to the projectivity of the generic fiber. But for the generic fiber,

it is well known that projectivity is equivalent to Gder being anisotropic (see for instance

[Pink]). We mention that the same projectivity criterion is also valid for PEL integral models

of more general levels. This can be deduced from the results of [Lan11], cf. the discussion

on p. 7 of [Pera]. We note that many of Lan’s results have been generalized by Madapusi

Pera to Hodge type, in [Pera]. See especially [Pera, Corollary 4.1.7] for the same projectivity

criterion for the Hodge-type integral models.

The computation of the local factor of the zeta function atp comes down to a parametriza-

tion of the fixed points, on the special fiber of SK p , of a correspondence Ta obtained by

composing a Hecke operator T (at a prime not dividing p) with the power Frobap , a >> 0, of

the (geometric) Frobenius automorphism at p. The points of the special fiber are partitioned

into isogeny classes of PEL quadruples (A, ι, λ, η̄) – in other words, isogeny classes of

abelian varieties A, together with the additional structures – and each such isogeny class is

preserved by Ta. Thus the determination of the local factor can be divided into four steps.

This division is artificial and does not follow the actual proof, and the account given below

is a gross oversimplification; however, it works as a first approximation. Precise statements

can be found in Chapter 4, specifically Theorem 5.3.1.

(i) Parametrization of the set of isogeny classes

The crucial observation is that the Honda-Tate classification of abelian varieties over finite

fields, in terms of their Frobenius automorphisms, allows us to parametrize the set VK of

isogeny classes of PEL quadruples by a certain subset of elliptic conjugacy classes in I (Q),

where I runs through a certain family of reductive group over Q whose conjugacy classes
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4 Introduction to Volume II

can be related to those of G. In this way the isogeny class supplies an elliptic conjugacy

class [γ0] ⊂ G(Q).

(ii) Parametrization of an individual isogeny class

The next step is to parametrize the fixed points belonging to the isogeny class corresponding

to the conjugacy class [γ0]. Suppose for a moment that A is an abelian variety over a

finite field k of characteristic p. Then for any prime ℓ � p, the ℓ-adic Tate module

Tℓ (A) is canonically a lattice in H1(Ak̄,Qℓ ), defined as the dual of the ℓ-adic cohomol-

ogy H1(Ak̄,Qℓ ). An A′ related to A by a prime-to-p-isogeny then defines by duality a

lattice in

H1(Ak̄,A
p

f
) :=

′∏

ℓ�p

H1(Ak̄,Qℓ ),

the restricted product being taken with respect to the integral cohomology. In this way the

prime-to-p isogeny classes of PEL quadruples can be related to G(A
p

f
) =
∏′

ℓ�p G(Qℓ )-

orbits in the space of lattices in H1(Ak̄,A
p

f
). A standard construction relates fixed points

of Hecke correspondences on this set of orbits with orbital integrals in G(A
p

f
).

Incorporating p-power isogenies is more subtle. Instead of ℓ-adic étale cohomology,

one needs to classify Frobenius-stable lattices in the rational Dieudonné module of A.

Since the Frobenius operator is only σ-linear, where σ is a generator of the Galois

group of the maximal unramified extension Qun
p of Qp , it is not surprising that this part

of the classification leads to twisted orbital integrals over finite unramified extensions

of Qp .

In this way, the global conjugacy class [γ0] of Step A is joined by a pair (γ, δ) with

γ ∈ G(A
p

f
) and δ ∈ G(Qp

un). The triple (γ0; γ, δ) is called a Kottwitz triple if it satisfies

the axioms of Definition 4.1.1 of Chapter 4.

(iii) Reconciliation of the global and local data by Galois cohomology

Steps (i) and (ii) have established a map from the set of points of SK p over finite fields

to the set of Kottwitz triples. Thus the Lefschetz trace of the correspondence Ta is a

weighted sum over the set of triples in the image of this map. Perhaps the deepest point

in the Langlands-Kottwitz method is the result of Kottwitz that asserts that the image

consists precisely of those triples for which a certain Galois cohomological invariant (which

is naturally known as the Kottwitz invariant) vanishes. A series of reductions translates

this fundamental observation into an application of the comparison theorem of p-adic

Hodge theory. For all this, see Chapter 1, Proposition 6.3.1, and Chapter 4, §4, especially

Theorem 4.2.8 and the sketch of its proof.

The Kottwitz invariant of a triple (γ0; γ, δ) closely resembles the cohomological invariant

that is the subject of Theorem 4.5 (also due to Kottwitz) of Chapter [H.I.A] of [CHLN].

The most obvious difference – that the Kottwitz invariant attached to points on Shimura

varieties involves a twisted conjugacy class at p – turns out (again thanks to Kottwitz) to be

a manageable problem. Thus in the end the Lefschetz trace of Ta can be written, just as in
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formula (4.7) of Chapter [H.I.A] of [CHLN], as a weighted sum of adelic orbital integrals,

indexed by global conjugacy classes. A similar analysis applies to compute the Lefschetz

trace of the operator Ta acting on the cohomology of an ℓ-adic local system Wρ defined by

an algebraic representation ρ of G.

The fourth step is the comparison of the formula that results from steps (i)-(iii) with

the stabilized trace of a Hecke operator T ′a acting on the space of automorphic forms

L2(G(Q)\G(A)/Z ), where Z ⊂ G(R) is a subgroup of the center chosen to make the

quotient space compact (for example, one can take Z to be the subgroup AG introduced in

Chapter L.IV.A of Volume 1). The operators T ′a and Ta coincide at finite places prime to p. At

p the local component of T ′a is a Hecke operator determined explicitly by a and the Shimura

datum, while the archimedean component of T ′a is a discrete series pseudocoefficient

determined by ρ, as in Chapter CHL.IV.B of [CHLN]. In this way the characteristic

polynomial of Frobp on eigenspaces of the Hecke operators away from p is determined by

the traces of Hecke operators at p on these same eigenspaces, confirming the Langlands

conjecture in the situations where the method applies.

The sketch given here is loosely based on two fundamental papers of Kottwitz: The idea

of comparing the Lefschetz trace formula for points of Shimura varieties over finite fields

with the Selberg trace formula for automorphic forms first appeared in a paper by Ihara

[I67], where it was applied to modular curves. Ihara’s method was extended by Langlands

to the adelic setting, allowing for certain kinds of bad reduction, in [L73]. Langlands wrote

a series of papers on the subject in the 1970s, and formulated a conjecture on the form of the

zeta function of a general Shimura variety in [L79]. Over the next decade Kottwitz developed

the techniques of Galois cohomology, in parallel with those introduced in Volume 1 for the

purposes of stabilizing the trace formula, in the end obtaining a formula for the Lefschetz

traces of the operators Ta with the same shape as the automorphic trace of T ′a. Readers of

Volume 1 will recall that the stabilization of the elliptic part of the Arthur-Selberg trace

formula breaks down into three steps analogous to (A-C) above. After the first two steps,

the (elliptic part of the) geometric side of the trace formula can be written as a sum over

conjugacy classes of pairs (γ, γv ), where γ (resp. γv) is a global (resp. adelic) conjugacy

class, satisfying some cohomological restrictions. The analogous formula was proved by

Kottwitz in [K92a] for PEL type Shimura varieties attached to groups G whose Lie algebras

are of type A or C.

The formula for Lefschetz traces was rewritten in [K90] as a sum over stable global

conjugacy classes of purely local orbital integrals, at the cost of introducing endoscopic

groups, and assuming the Fundamental Lemma and related conjectures. The resulting

formula was completely analogous to the elliptic part of the stable trace formula. While

everything developed in the first part of the present book is at least implicit in [K90],

the latter is not so easy to use as a reference, because his formulation of the answer

makes no distinction between conjectures, like the Fundamental Lemma, that have since

been proved, and the most general conjectures relative to the parametrization of points on

general Shimura varieties. Moreover, Kottwitz went further: he rewrote the spectral side

of the trace formula in terms of Arthur parameters, defined in terms of the Langlands

group whose existence is still hypothetical. In Arthur’s book [A13] on classical groups, as
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6 Introduction to Volume II

(implicitly) in the chapters by Clozel, Harris, and Labesse in Volume 1, cuspidal automorphic

representations of GL(n) are used as a substitute for Arthur parameters. One of the aims

of the Paris book project was to provide a usable reference for the applications of the trace

formula to the Shimura varieties most relevant to the construction of Galois representations.

Since these Galois representations are attached to (polarized) cohomological cuspidal auto-

morphic representations of GL(n), it is completely natural to use these representations as

parameters.

Remark. There are other good introductions to this subject matter, notably Milne’s three

papers [Mi90, Mi92, Mi05]. The treatment here differs from that of Milne in that, as in

Volume 1, we focus specifically on the case of Shimura varieties attached to unitary simili-

tude groups. This is the most important case for the construction of Galois representations;

moreover, in this case, the elliptic conjugacy classes that arise in the trace formula, as well

as the transfer factors used to stabilize the trace formula, are easy to describe in terms of

algebraic number theory (see §8 of the first chapter of [CHLN]).

Unitary groups vs. similitude groups

The Shimura variety attached to the (rational) similitude group GU (V ) is of PEL type. In

particular, it is (a piece of) the solution of a moduli problem that has been well understood

in characteristic zero since Shimura’s work of the 1960s, and the determinant condition

introduced by Kottwitz in [K92a] (see Chapter 3, section 2.2) provides a definition of

the moduli problem that is valid in all good characteristics. This makes it possible to

treat the parametrization of the points efficiently, but the reduction of the automorphic

theory of GU (V ) to that of U (V ), and thus (by base change) to that of GL(n), is not

trivial; see §1 of Chapter CHL.IV.C of [CHLN] for an illustration of this. Even when this

issue has been resolved, the parametrization of automorphic representations of GU (V )

requires an auxiliary Hecke character that is destined to disappear when constructing

automorphic Galois representations, but that in the intermediate steps introduces additional

variables that pose an ultimately useless challenge to fitting the crucial formulas in a

single line.

It is also possible to attach a Shimura variety directly to the unitary group. One of

us (M.H.) has written a fair number of papers about the Shimura varieties attached to

similitude groups and is quite embarrassed to confess that he only learned of this possibility

in 2017, after having failed to read carefully Chapter 27 of [GGP], and thus contributed

significantly to the proliferation of excessively long formulas. Langlands’s conjecture on the

zeta functions of Shimura varieties ([L79]; see also Conjecture 0.4 below), applied in this

case, yields a simple relation between the Galois representations on the ℓ-adic cohomology

of the Shimura varieties attached to unitary groups, on the one hand, and the automorphic

representations of GL(n), on the other hand. However, these varieties are of abelian type but

not of PEL type – they do not parametrize families of abelian varieties, but rather of motives

closely related to those of abelian varieties. The proof of the Langlands conjecture – at

places of good reduction – for Shimura varieties of abelian type, by the Langlands-Kottwitz

method, is the subject of work in progress by Kisin, Shin, and Zhu [KSZ] that should appear

in the near future.
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B. Geometry of Shimura varieties in positive characteristic

For arithmetic applications, the existence and characterization of integral canonical models

for Shimura varieties play an important role. Let us discuss this problem in a fairly general

context, where the Shimura variety Sh(G, X )K f
is associated to Shimura data such that

GQp
is an unramified group and K f factorizes as K f = K pKp for Kp ⊂ G(Qp) a

hyperspecial maximal compact subgroup and for K p ⊂ G(A
p

f
) a sufficiently small compact

open subgroup. We fix Kp but let K p vary, and consider the pro-E-scheme

ShKp
(G, X ) = lim

←−−K p
Sh(G, X )K pKp

.

Here Sh(G, X )K pKp
denotes the canonical model of the Shimura variety over the reflex

field E. An integral model of ShKp
(G, X ) over Op consists of a G(A

p

f
)-equivariant inverse

system (SK p ) of Op-models of the inverse system (Sh(G, X )K pKp, Ep )K p . We also view

the pro-Op-scheme SKp
= lim
←−−K p

SK p as an integral model of ShKp
(G, X )Ep . We say such

an integral model is smooth if for some subgroup K
p

0 , SK p

0

is smooth over Op and SK p

1

is

étale over SK p

2

for all K
p

1 ⊆ K
p

2 ⊆ K
p

0 . Given our assumption on Kp , a smooth integral

model should always exist. In the case where the Shimura data is PEL type (assuming

p > 2 in Type D), Kottwitz [K92a] showed that the natural PEL moduli problem attached

to (G, X, K pKp) is represented by a smooth quasi-projective scheme over Op, essentially

by reducing to the Siegel case (GSp, S±), which was handled earlier by Mumford using

geometric invariant theory [Mu65].

If ShKp
(G, X ) has at least one smooth integral model, in principle it will have many.

So it is important to define a favorable notion of smooth integral model and characterize it

by a condition which pins it down up to unique isomorphism. One such characterization,

reminiscent of the Néron extension property of Néron models, was suggested by Milne

[Mi92, §2]: the pro-Op-scheme SKp
should be termed an integral canonical model if it is

smooth (hence regular as a scheme) and satisfies the following extension property: given any

regular Op-scheme Y such that YEp is dense in Y , any Ep-morphism YEp → ShKp
(G, X )Ep

extends uniquely to an Op-morphism Y → SKp
. As explained by Moonen [Mo98, §3], it

is not clear such models always exist; it is not even clear that the Siegel modular scheme

satisfies this extension property. Fundamentally, the problem is that the class of test schemes

Y in this definition is too broad. In showing that the Siegel modular scheme satisfies Milne’s

extension property, one needs to know that for any closed subscheme Z ⊂ Y disjoint from

YEp and of codimension at least 2, any abelian scheme overY\Z extends to an abelian scheme

over all of Y . However, this statement is false in general ([Mo98, §3.4]). But the required

version of it beomes true, thanks to a lemma of Faltings [Mo98, 3.6], if we require Y to

also be formally smooth over Op (see [Mo98, §3.5]). The problem with Milne’s suggestion

is therefore averted by modifying the extension property: we require it only of regular and

formally smooth Op-schemes Y (see [Ki10, §2.3.7]). Then Kisin’s main result in [Ki10]

is that, for p > 2, every abelian type Shimura variety ShKp
(G, X ) possesses an integral

canonical model SKp
in this modified sense. Since SKp

is itself regular and formally smooth

over Op by construction, the modified extension property characterizes SKp
uniquely up

to unique isomorphism. Vasiu proved results similar to Kisin’s in his earlier works [Va99],
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8 Introduction to Volume II

but the characterization is stated in a different way. It is not hard to show that Kottwitz’s

PEL moduli problems are represented by (finite unions of) integral canonical models. In

particular this applies to the PEL unitary Shimura varieties which are the main focus of this

volume.

Chapter 5 is a summary of Kisin’s paper [Ki10], which constructs integral canonical

models for Shimura varieties of abelian type (assuming p > 2) according to the following

outline:

(i) Hodge type case

For Hodge type data (G, X ) endowed with an embedding of Shimura data (G, X ) →֒

(GSp(V ), S±), one constructs an integral canonical model SKp
as the normalization of

the closure of ShKp
(G, X ) in SK′p (GSp(V ), S±) for K ′p ⊂ GSp(Qp) the stabilizer of a

certain lattice VZ ⊂ V . Here, the integral model SK′p (GSp(V ), S±) comes from a moduli

problem, formulated with the choice of VZ. (Warning: the latter is not necessarily an integral

canonical model associated to (GSp(V ), S±) so in particular is not necessarily the same as

Kottwitz’ Siegel modular scheme, unless K ′p is hyperspecial.)

This first step relies on Kisin’s Key Lemma, which asserts that certain tensors arising

from certain Hodge classes via the p-adic comparision theorems are integral. For this Kisin

uses his earlier results on crystalline representations. Then Kisin is able to make use of

Faltings’ deformation ring for p-divisible groups equipped with a collection of Tate cycles

[Fa99, §7] to show that SKp
as constructed above is smooth and satisfies the modified

extension property.

(ii) Abelian type case

Let (G, X ) be a Shimura variety of abelian type, and let (G1, X1) be a Shimura variety of

Hodge type such that there is a central isogeny Gder
1 → Gder inducing an isomorphism

(Gad
1 , X

ad
1 )

∼
→ (Gad, Xad). Kisin constructs the integral canonical model for ShKp

(G, X )

from the one already constructed for ShK1,p
(G1, X1).

Having the integral canonical model SKp
in hand, it now makes sense to consider

its special fiber S̄Kp
, which is a well-defined object depending canonically on the data

(G, X, Kp ). Again, for PEL type Shimura varieties like the ones we consider in this volume,

this amounts to studying the Kottwitz moduli problems over the residue field of Op.

Even in PEL situations, there are difficult questions revolving around the counting of

points (used to understand zeta functions and to construct Galois representations in the

cohomology of Shimura varieties), and also questions related to various stratifications

(Newton, Ekedahl-Oort, Kottwitz-Rapoport, etc.). In this volume, the point-counting prob-

lems and their relations to automorphic forms and Galois representations are addressed

in the articles (Zhu), (Shin), and (Scholze), and their contents are further described in

Parts A and C of this introduction. In the rest of Part B, we discuss the articles (Manto-

van) and (Viehmann), which are concerned with the geometry of the special fibers S̄Kp
,

most importantly with the Newton stratification, the Oort foliations, and their applica-

tions. Although some statements are currently known to extend to Hodge type Shimura

varieties, for the most part we will limit our discussion to PEL Shimura varieties, for

simplicity.
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Let k � Fp be a finite prime field, and let L denote the fraction field of the Witt ring

W (k̄). Let σ be the Frobenius automorphism of W (k̄) over W (k) induced by x �→ xp on

k, and use the same symbol for the automorphism of L. An F-isocrystal is a pair (V,Φ)

consisting of a finite-dimensional L-vector space V and a σ-linear bijection Φ : V → V .

Using the Dieudonné-Manin classification of F-isocrystals, one can associate to a simple

F-isocrystal its Newton polygon. In [Ko85], Kottwitz defined, for any connected reductive

group G/Qp , the set of F-isocrystals with G-structure (called G-isocrystals here), and

showed that when G is quasi-split this set is identified with the pointed set B(G) consisting

of σ-conjugacy classes in G(L). In the same setting he gave a group-theoretic meaning to

Newton polygons, defining the set of Newton points

N (G) = (X∗(A)Q/Ω)Γ

where A is a maximalQp-torus with Weyl groupΩ and Γ = Gal(Q̄p/Qp). Further, Kottwitz

gave a group-theoretic generalization of the map to Newton polygons, by defining the

Newton map

ν̄ : B(G) → N (G) , b �→ ν̄b

(see (Viehmann), §3). Here νb ∈ HomL (D,G) refers to the slope homomorphism which

is the group-theoretic counterpart of slopes of an isocrystal (see (Mantovan), §2.3). In the

cases of interest to us (where Gder
= Gsc and G is quasisplit overQp), the map ν̄ is injective,

and the natural partial order 
 on N (G) gives B(G) the structure of a poset.

Now return to the global data (G, X ), where GQp
is still assumed to be quasi-split, and let

μQ̄p
denote a geometric cocharacter of GQ̄p

coming from (G, X ) in the usual way. Kottwitz

defined a finite subset B(GQp
, μQ̄p

) ⊂ B(G) using
. In PEL cases, a closed geometric point

x of S̄Kp
gives rise to the GQp

-isocrystal associated to the (rational) Dieudonné module

DHx,Q of its associated p-divisible group Hx , and thus to an element [bx ] ∈ B(GQp
, μQ̄p

).

The Newton stratum (resp. closed Newton set) associated to [b] ∈ B(GQp
, μQ̄p

) is the

locus N[b] (resp.N
[b]) of points x ∈ S̄Kp
(k̄) such that [bx ] = [b] (resp. [bx ] 
 [b]). It

is known thanks to Grothendieck (for p-divisible groups without additional structure)

and thanks to Rapoport-Richartz [RR96] in general, that N
[b] is indeed a closed

subset.

Fundamental quesions one can ask about Newton strata for [b] ∈ B(GQp
, μQ̄p

):

• Is every Newton stratum N[b] non-empty?

• Does the stratification behave well, i.e., is N
[b] the union of the N[b′] for [b′] 
 [b]?

• What is the geometry of N[b], in particular, what is its dimension?

• How does N[b] relate to other important objects, such as Rapoport-Zink spaces

RZ(G,b,μ) and the central leaves C[b] in N[b]? (See (Mantovan), §3, 4.)

A large part of the article (Viehmann) is a summary of the current knowledge about these

questions. The first point has been established in many cases, including in the PEL cases of

interest to us, by Viehmann-Wedhorn, see Theorem 4.1 of chapter (Viehmann); in addition

(Viehmann) explains various others approaches to the non-emptiness question. The second
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point was proved, in both PEL and Hodge type cases, by Hamacher [Ha15b, Ha17] (see

(Viehmann), Theorem 5.2). The most important part of the proof in the PEL case is to first

answer the third point, in particular to prove that N[b] is equidimensional and that dimN[b]

is as conjectured (up to a minor correction) by Rapoport [Ra05, p. 296] – see (Viehmann),

Theorem 5.7. An essential tool is the relation

dimN[b] = dim Xμ (b)Qp
+ dim C[b], (0.1)

where C[b] is the central leaf in the Newton stratum and Xμ (b)Qp
is the affine Deligne-

Lusztig variety, which can be identified with the reduced Rapoport-Zink space RZ (G,b,μ) .

The equation (0.1) reflects the Oort-Mantovan structure of N[b] as an “quasi-product” of

RZ(G,b,μ) and C[b]; see (Mantovan), §5.

The affine Deligne-Lusztig variety has a counterpart in the equal characteristic world,

Xμ (b)Fp ((t)) , which had been intensively studied by Görtz-Haines-Kottwitz-Reuman

[GHKR], Viehmann [Vi06] (for split groups G over Fp ((t))) and by Hamacher [Ha15a]

(for unramified groups), and also by many others. In particular the cited works completely

proved Rapoport’s conjectural closed formula for dim Xμ (b), when G is unramified but

μ is arbitrary (not necessarily minuscule) – see (Viehmann) Theorem 5.13. In [Ha15b,

Ha17], Hamacher transported the techniques of these papers over to the p-adic context

Xμ (b)Qp
, and deduced the required dimension formulae for PEL and Hodge type Shimura

varieties.

The quasi-product structure of N[b] is discussed in greater depth in (Mantovan), §5,

and is extended to quasi-products of Igusa varieties Igm,X and elements in the truncated

Rapoport-Zink tower, denoted in (Mantovan) by M
n,d

b,X
, where X is a certain “completely

slope divisible” p-divisible group compatible in a certain sense with μQ̄p
. The quasi-product

structure refers to finite surjective morphisms

Igm,X × M̄
n,d

b,X
→ N[b](k̄).

These structures give rise to Mantovan’s formula expressing the cohomology of N[b] in

terms of the cohomology of the corresponding Igusa varieties and Rapoport-Zink spaces,

see (Mantovan), §5.3.

Finally, we mention that all of the above questions can be framed and studied for more

general subgroups Kp . In particular, the cases where Kp is a parahoric subgroup have

attracted a lot of attention in recent years, but unfortunately this is beyond the scope of the

present volume and we will not attempt to summarize the progress that has been made in

this direction. Let us only mention that Kisin and Pappas [KP] have recently succeeded in

constructing integral models SKp
for abelian type Shimura varieties ShKp

(G, X ) in most

cases where Kp is parahoric and p > 2. Furthermore, it is fully expected that these integral

models, while neither regular nor formally smooth, are nevertheless characterized uniquely

by a kind of valuative criterion of properness for characteristic (0, p) valuation rings. A

careful study of the fine structure of their reductions modulo p has borne some fruit but

much work remains to be done. The reader is encouraged to consult the paper of He and

Rapoport [HeRa] for a contemporary (group-theoretic) point of view unifying all the various

stratifications which are considered in this subject.
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