Prioritarianism in Practice

Prioritarianism is an ethical theory that gives extra weight to the well-being of the worse off. In contrast, dominant policy-evaluation methodologies, such as benefit-cost analysis, cost-effectiveness analysis, and utilitarianism, ignore or downplay issues of fair distribution. Based on a research group founded by the editors, this important book is the first to show how prioritarianism can be used to assess governmental policies and evaluate societal conditions. This book uses prioritarianism as a methodology to evaluate governmental policy across a variety of policy domains: taxation, health policy, risk regulation, education, climate policy, and the COVID-19 pandemic. It also demonstrates how prioritarianism improves on GDP as an indicator of a society's progress over time. Edited by two senior figures in the field with contributions from some of the world's leading economists, this volume bridges the gap from the theory of prioritarianism to its practical application.

MATTHEW D. ADLER is Richard A. Horvitz Professor of Law and Professor of Economics, Philosophy, and Public Policy at Duke University. He is the author of *Measuring Social Welfare* (2019) and *Well-Being and Fair Distribution: Beyond Cost-Benefit Analysis* (2012).

OLE F. NORHEIM is Professor of Medical Ethics at University of Bergen and Adjunct Professor of Global Health at Harvard T.H. Chan School of Public Health.

Prioritarianism in Practice

Edited by

MATTHEW D. ADLER Duke University

OLE F. NORHEIM University of Bergen

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108703604

DOI: 10.1017/9781108691734

© Cambridge University Press & Assessment 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2022 First paperback edition 2024

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Names: Adler, Matthew D., editor. | Norheim, Ole Frithjof, editor. Title: Prioritarianism in practice / edited by Matthew D. Adler, Duke University, North Carolina, Ole F. Norheim, Universitetet i Bergen, Norway. Description: Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2022. | Includes bibliographical references and index. Identifiers: LCCN 2021045508 (print) | LCCN 2021045509 (ebook) | ISBN 9781108480932 (hardback) | ISBN 9781108703604 (paperback) | ISBN 9781108691734 (epub) Subjects: LCSH: Social indicators. | Economic indicators. | Quality of life. | BISAC: POLITICAL SCIENCE / Public Policy / Economic Policy Classification: LCC HN25 .P74 2022 (print) | LCC HN25 (ebook) | DDC 301-dc23 LC record available at https://lccn.loc.gov/2021045508 LC ebook record available at https://lccn.loc.gov/2021045509 ISBN 978-1-108-48093-2 Hardback ISBN 978-1-108-70360-4 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

List	of Figures	<i>page</i> vii
List	of Tables	xi
List	of Contributors	XV
1	Introduction Matthew D. Adler and Ole F. Norheim	1
2	Theory of Prioritarianism Matthew D. Adler	37
3	Well-Being Measurement Matthew D. Adler and Koen Decancq	128
4	Prioritarianism and Optimal Taxation Matti Tuomala and Matthew Weinzierl	172
5	Prioritarianism and Measuring Social Progress Koen Decancq and Erik Schokkaert	204
6	Prioritarianism and Health Policy Richard Cookson, Ole F. Norheim, and Ieva Skarda	260
7	Prioritarianism and Fatality Risk Regulation James K. Hammitt and Nicolas Treich	317
8	Prioritarianism and Climate Change Maddalena Ferranna and Marc Fleurbaey	360
9	Prioritarianism and Education <i>Erwin Ooghe</i>	408
10	Empirical Research on Ethical Preferences: How Popula Is Prioritarianism? Erik Schokkaert and Benoît Tarroux	r 459

v

vi	Co.	ntents
11	Prioritarianism and Equality of Opportunity Paolo Brunori, Francisco H.G. Ferreira, and Vito Peragine	518
12	Prioritarianism and the COVID-19 Pandemic Maddalena Ferranna, J.P. Sevilla, and David E. Bloom	572
Ind	ex	651

Figures

1.1	Well-being numbers inputted into a concave	
	transformation function	page 2
2.1	A prioritarian transformation function	54
3.1	Two nested reference sets and a history	137
3.2	Two histories that are equivalent to the same	
	reference set	138
3.3	The money metric well-being measure	139
3.4	A monotone path and a history	142
3.5	Two histories that are equivalent to the same attribute	
	bundle on the monotone path	143
3.6	The ray utility well-being measure	144
3.7	The equivalent-income well-being measure	145
3.8	Equivalent incomes when preferences are not	
	monotonic	147
4.1	Tax schedules for prioritarian and utilitarian social	
	objectives	180
4.2	Tax schedules for utilitarian and maximin social	
	objectives	180
4.3a	a and 4.3b Tax schedules for prioritarian social	
	objectives	181
4.30	c and 4.3d Tax schedules for Atkinson form of the	
	social objective	182
4.4	Tax schedules for different social objectives, quadratic	
	utility specification	185
4.5	Tax schedules for utilitarian and prioritarian social	
	objectives, quadratic utility specification	186
4.6	Inverse optimum results for tax policy in Finland	193
4.7	Inverse optimum results for tax policy in the	
	United States	194

vii

viii		List of Figures
5.1	Growth incidence curve of the global income distribution	222
5.2	Growth incidence and change in social welfare	
0.2	between 1995 and 2000 for Atkinson (top) and	
	Kolm-Pollak (bottom) social welfare functions, using	5
	expenditures as well-being measure	241
5.3	Growth incidence and change in social welfare	
	between 1995 and 2005 for Atkinson (top) and	
	Kolm-Pollak (bottom) social welfare functions, using	2
	expenditures as well-being measure	242
5.4	Growth incidence and change in social welfare	
	between 1995 and 2000 for Atkinson (top) and	
	Kolm-Pollak (bottom) social welfare functions, using	2
	equivalent incomes as well-being measure	246
5.5	Growth incidence and change in social welfare	
	between 1995 and 2005 for Atkinson (top) and	
	Kolm-Pollak (bottom) social welfare functions, using	5
	equivalent incomes as well-being measure	247
5.6	Growth incidence and change in social welfare	
	between 1995 and 2000 for Atkinson (top) and	
	Kolm-Pollak (bottom) social welfare functions, using	5
	vNM utility as well-being measure	249
5.7	Growth incidence and change in social welfare	
	between 1995 and 2005 for Atkinson (top) and	
	Kolm-Pollak (bottom) social welfare functions, using	5
	vNM utility as well-being measure	250
6.1	Cost-effectiveness plane	269
6.2	Baseline distributions of income and health	285
6.3	State transition diagram for the Markov model	286
6.4	Survival by income quintile group with and without	
	treatment, and the resulting effects, comparing the	
	healthy (solid lines) and cancer (dotted lines)	
	populations	288
6.5	Treatment effect (net increase) on expected lifespan	
	measured in years and health-adjusted life years for t	he
	cancer patients with OOP and UPF, by income quint	ile 289
6.6	Net per capita lifetime income at baseline, with OOI	Ľ
	and UPF for the healthy and cancer groups, by incor	ne
	quintile – levels and incremental comparisons	289

List o	of Figures	ix
6.7	Net lifetime equivalent life at baseline, with OOP and UPF for the healthy and cancer groups, by income	201
6.8	quintile – levels and incremental comparisons Net lifetime equivalent income at baseline, with OOP and UPF for the healthy and cancer groups, by	291
6.9	income quintile – levels and incremental comparisons Ex post evaluation: Distribution of age at death (measured in life years after age 50) by quintile and	293
7.1	health status in the cohort of 100,000 VSL is the slope of the indifference curve between the individual's wealth and survival probability at her	295
7.2	current position SVRR normalized for age and income (= 1 for age 60.	323
7.3	median income) for BCA and alternative SWFs Ratio of SVRR at 90th percentile to 10th percentile of	340
7.4	income under BCA and alternative SWFs SVRR for median income normalized for age (= 1 for	341
8.1	age 60) for BCA and alternative SWFs The Social Cost of Carbon under the expected discounted utilitarian approach, as a function of the	342
	utility discount rate ρ and of the coefficient of risk aversion <i>n</i>	389
8.2	The Social Cost of Carbon under ex-post prioritarianism as a function of the coefficient of risk aversion η and of the coefficient of inequality	507
10.1	aversion γ "Government should reduce income differences" (GSS) – average responses in the US over the last	390
	decades	463
10.2 10.3	Preferences and policies: multiple equilibria Willingness to redistribute by Eastern and Western	465
10.4	Germans Actual and ethical inequality, as evaluated by Eastern	466
	and Western Germans	467
10.5	Transfer principle	474
10.6	Utilitarian versus equal sacrifice taxation	483
10.7	Choice between income/well-being bundles	484
10.8	Estimates of σ and α	496
11.1	Circumstances, effort and well-being	524

X	List of Figures
11.2 Illustrations of first- and second-order stochastic	
dominance	529
11.3 A stylized representation of the ex-ante E.Op	
prioritarianism clash	534
11.4 The partition of South Africa into five Roemerian	
types	554
11.A.1 Income differences between observations with	
missing and non-missing circumstances	566
11.A.2–11.A.6 Empirical cumulative distribution	
functions for five types in South	
Africa: 2008–2017	567
11.A.7 Re-ranking of types across tranches in 2012	569
12.1 Number of COVID-19 cases over time with and	
without nonpharmaceutical interventions and	
projected rationing	579

Tables

1.1	Nagel's two-child case, as presented by Parfit	page 8
2.1	The major SWFs	53
2.2	The state-of-nature format for representing	
	uncertainty	58
2.3	The Pigou–Dalton Axiom	65
2.4	The Separability Axiom	66
2.5	The Continuity Axiom	67
2.6	Policy Separability	68
2.7	An individual-specific cardinal rescaling of the	
	well-being measure	78
2.8	A common ordinal rescaling of the well-being	
	measure	79
2.9	The conflict between ex ante Pareto and Dominance	85
2.10	The axiomatic properties of utilitarian and	
	prioritarian SWFs	89
2.11	Inequality metrics (IMs) violate Separability	101
2.12	Total, average, and critical-level utilitarianism	
	and prioritarianism	107
3.1	The role of scaling factors in the vNM approach	154
4.1	Tax schedules for different social objective	
	parameterizations	179
4.2	Tax schedules for different social objective and ability	
	distribution parameterizations	184
4.3 a	nd 4.4 Level of basic income under different utility	
	and social objective specifications	187
4.5,	4.6 and 4.7 Extent of redistribution under different	
	utility and social objective specifications	188
4.8 a	nd 4.9 Extent of redistribution under different	
	revenue requirements	189
5.1	Three life courses	215

xi

xii	List of Tables
5.2 Income and welfare growth	233
5.3 Growth rates of income and equivalent income in	
period 2008–2010	235
5.4 Inequality aversion parameters γ and β for different	
values of the social welfare-neutral leak κ	237
5.5 Equally-distributed equivalent (\hat{S}), average (μ) and	
inequality (A) for the Atkinson social welfare functi	on,
using expenditures, equivalent incomes and vNM	
utilities as well-being measure	238
5.6 Equally-distributed equivalent (S), average (μ) and	
inequality (KP) for the Kolm-Pollak social welfare	
function, using expenditures, equivalent incomes ar	ıd
vNM utilities as well-being measure	239
5.7 Estimation of the individual risk attitudes	254
6.1 Input variables for Markov model	286
6.2 Results from cost-effectiveness analysis	287
6.3 Estimated willingness to pay for a HALY, by incon	ne
quintile group	292
6.4 Summary per capita results for all evaluation	• • •
approaches	296
6.5 Summary results for all evaluation approaches	2
(incremental over 30 years in the cohort of 100,000)
people)	298
6.6 Benefit-cost analysis, total costs and benefits over	200
30 years in a cohort of 100,000 people.	299
6.A.4.1 Summary results for all evaluation approaches	310
6.A.4.2 Benefit-cost analysis	311
7.1 Effects of baseline risk, wealth, and health on SVKR	227
the single-period model	327
7.2 Effects of income and baseline risk on SVRR in the	225
multi-period model 7.2 Recalized that make a set ($^{\circ}$) for a slice that we have	333
7.5 breakeven average cost (\$) for policy that reduces	242
average annual mortality fisk by 1/100,000	545
7.4 Social value of reducing alternative dimensions of	251
11 The Social Cost of Carbon under different social	551
welfare function approaches as a function of the	
coefficient of risk aversion <i>n</i>	300
$\mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O}$	570

List of Tables

8.2	Parameters used in the climate-economy model	400
9.1	A classification of the education literature	411
9.2	Four metrics underlying the different sub-strands	414
9.3	Four evaluations decomposed in key statistics and the	
	degree of priority	415
9.4	A comparison of different normative positions	430
10.1	Agreement with basic axioms on social welfare	474
10.2	Distributions and their Borda score	489
10.3	Acceptance rates of basic axioms	490
10.4	Demand for the low payoff	494
10.5	Estimates of γ and α for both treatments	495
10.6	Amount given to U	499
10.7	Some predictions – choice of z_U	500
11.1	Variants of E.Op. theory	533
11.2	Ex-ante compensation: axioms and results	542
11.3	Ex-ante and ex-post compensation: axioms and	
	results	549
11.4	Descriptive statistics for the samples included in	
	the analysis	553
11.5	Type income means, population shares and sample	
	sizes, over time	555
11.6	Population-wide Generalized Lorenz dominance	556
11.7	Six versions of opportunity-prioritarian dominance	
	results for South Africa: 2008-2017	557
11.A	.1 Distribution of missing information	565
11.A	.2 Tranches Generalized Lorenz dominance	566
12.1	COVID-19 mortality rates by age and income group	593
12.2	Individuals' willingness to pay as a percentage of own	
	income for a policy that eliminates the risk of death	
	from COVID-19, by age and income quintile	594
12.3	Maximum percentage GDP loss that is considered	
	socially acceptable to pay for an intervention that	
	eliminates the COVID-19 mortality risk	597
12.4	Utilitarian SVRR compared with the corresponding	
	utilitarian SVRR attached to an older person in the	
	1st income quintile, by age and income group	614
12.5	Utilitarian-adjusted reduction in COVID-19	
	mortality risk if the vaccine is 100% effective for all	
	age groups, by age and income group	616

xiv

Cambridge University Press & Assessment 978-1-108-70360-4 — Prioritarianism in Practice Matthew D. Adler, Ole F. Norheim Frontmatter <u>More Information</u>

List of Tables

12.6	Ex-ante prioritarian SVRR compared with the corresponding ex-ante prioritarian SVRR attached to an older person belonging to the 1st income	
	quintile, by age and income group	618
12.7	Ex-ante-prioritarian-adjusted reduction in COVID-19	
	mortality risk if the vaccine is 100% effective for all	
	age groups, by age and income group	619
12.8	Ex-post prioritarian SVRR compared with the	
	corresponding ex-post prioritarian SVRR attached	
	to an older person belonging to the 1st income	
	quintile, by age and income group	622
12.9	Ex-post-prioritarian-adjusted reduction in COVID-19	
	mortality risk if the vaccine is 100% effective for all	
	age groups, by age and income group	623
12.A.1	Individuals' willingness to pay as a percentage of	
	own income for a policy that eliminates the risk of	
	death from COVID-19, by age group and	
	income quintile	637
12.B.1	Ex-ante prioritarian SVRR compared with the	
	ex-ante prioritarian SVRR attached to an older	
	person belonging to the 1st income quintile, by age	
	and income group	641
12.B.2	Ex-ante-prioritarian-adjusted reduction in COVID-19	
	mortality risk if the vaccine is 100% effective for all	
	age groups, by age and income group	641
12.B.3	Ex-post prioritarian SVRR compared with the	
	ex-post prioritarian SVRR attached to an older	
	person belonging to the 1st income quintile, by age	
	and income group	642
12.B.4	Ex-post-prioritarian-adjusted reduction in COVID-19	
	mortality risk if the vaccine is 100% effective for all	
	age groups, by age and income group	642

List of Contributors

MATTHEW D. ADLER is Richard A. Horvitz Professor of Law and Professor of Economics, Philosophy, and Public Policy, Duke University.

DAVID E. BLOOM is Clarence James Gamble Professor of Economics and Demography, Harvard T. H. Chan School of Public Health.

PAOLO BRUNORI is Assistant Professorial Research Fellow, International Inequality Institute, London School of Economics.

RICHARD COOKSON is Professor, Centre for Health Economics, University of York.

KOEN DECANCQ is Associate Research Professor, Herman Deleeck Centre for Social Policy, University of Antwerp.

MADDALENA FERRANNA is Research Associate, Harvard T. H. Chan School of Public Health.

FRANCISCO H. G. FERREIRA is Amartya Sen Professor of Inequality Studies, London School of Economics.

MARC FLEURBAEY is Senior Researcher and Professor, CNRS and Paris School of Economics.

JAMES K. HAMMITT is Professor of Economics and Decision Sciences, Harvard University, and Associate, Toulouse School of Economics.

OLE F. NORHEIM is Professor of Medical Ethics, University of Bergen, and Adjunct Professor of Global Health, Harvard T. H. Chan School of Public Health.

XV

xvi

Cambridge University Press & Assessment 978-1-108-70360-4 — Prioritarianism in Practice Matthew D. Adler, Ole F. Norheim Frontmatter <u>More Information</u>

List of Contributors

ERWIN OOGHE is Professor of Economics, KU Leuven and Research Fellow at ZEW, Mannheim and CESifo, Munich.

VITO PERAGINE is Professor of Economics, University of Bari.

ERIK SCHOKKAERT is Professor of Economics (emeritus), KU Leuven.

JP SEVILLA is Research Associate, Harvard T. H. Chan School of Public Health.

IEVA SKARDA is Postdoctoral Research Fellow, Centre for Health Economics, University of York.

BENOÎT TARROUX is Professor of Economics, University Lumière Lyon 2 and GATE-Lyon-Saint-Etienne.

NICOLAS TREICH is Researcher, University Toulouse Capitole, Toulouse School of Economics, INRAE.

MATTI TUOMALA is Professor of Economics (emeritus), Tampere University.

MATTHEW WEINZIERL is Joseph and Jacqueline Elbling Professor of Business Administration, Harvard Business School.