London Mathematical Society Lecture Note Series: 462

Zeta and L-Functions of Varieties and Motives

BRUNO KAHN
CNRS, Institut de Mathématiques de Jussieu-Paris Rive Gauche
Contents

Introduction page 1

1 The Riemann zeta function 6
1.1 A bit of history 6
1.2 Absolute convergence 7
1.3 The Euler product 8
1.4 Formal Dirichlet series 10
1.5 Extension to $\Re(s) > 0$; the pole and residue at $s = 1$ 12
1.6 The functional equation 13
1.7 The Riemann hypothesis 15
1.8 Results and approaches 17
1.9 The prime number theorem 18
1.10 Dedekind zeta functions 18

2 The zeta function of a \mathbb{Z}-scheme of finite type 20
2.1 A bit of history 20
2.2 Elementary properties of $\zeta(X, s)$ 21
2.3 The case of a curve over a finite field: the statement 24
2.4 Strategy of the proof of Theorem 2.7 25
2.5 Review of divisors 26
2.6 The Riemann–Roch theorem 26
2.7 Rationality and the functional equation (F.K. Schmidt) 27
2.8 The Riemann hypothesis: reduction to (2.4.1) (Hasse, Schmidt, Weil) 29
2.9 The Riemann hypothesis: Weil’s first proof 29
2.10 First applications 40
2.11 The Lang–Weil theorems 41

v
Contents

3 The Weil conjectures 44
 3.1 From curves to abelian varieties 44
 3.2 The Riemann hypothesis for an abelian variety 52
 3.3 The Weil conjectures 54
 3.4 Weil cohomologies 57
 3.5 Formal properties of a Weil cohomology 60
 3.6 Proofs of some of the Weil conjectures 68
 3.7 Dwork’s theorem 71

4 L-functions from number theory 73
 4.1 Dirichlet L-functions 73
 4.2 The Dirichlet theorems 76
 4.3 First generalisations: Hecke L-functions 84
 4.4 Second generalisation: Artin L-functions 94
 4.5 The marriage of Artin and Hecke 101
 4.6 The constant of the functional equation 102

5 L-functions from geometry 104
 5.1 “Hasse–Weil” zeta functions 104
 5.2 Good reduction 108
 5.3 L-functions of l-adic sheaves 110
 5.4 The functional equation in characteristic p 120
 5.5 The theory of weights 129
 5.6 The completed L-function of a smooth projective variety over a global field 133

6 Motives 142
 6.1 The issue 142
 6.2 Adequate equivalence relations 144
 6.3 The category of correspondences 146
 6.4 Pure effective motives 147
 6.5 Pure motives 148
 6.6 Rigidity 150
 6.7 Jannsen’s theorem 151
 6.8 Specialisation 152
 6.9 Motivic theory of weights (pure case) 154
 6.10 Example: Artin motives 157
 6.11 Example: h^1 of abelian varieties 158
 6.12 The zeta function of an endomorphism 159
 6.13 The case of a finite base field 161
 6.14 The Tate conjecture 164
 6.15 Coronidis loco 166
Contents

<table>
<thead>
<tr>
<th>Appendix A</th>
<th>Karoubian and monoidal categories</th>
<th>168</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix B</td>
<td>Triangulated categories, derived categories, and perfect complexes</td>
<td>181</td>
</tr>
<tr>
<td>Appendix C</td>
<td>List of exercises</td>
<td>195</td>
</tr>
</tbody>
</table>

| Bibliography | | 197 |
| Index | | 207 |