
Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

An Introduction to Python Programming for

Scientists and Engineers

Python is one of the most popular programming languages, widely used for data analysis

and modelling, and is fast becoming the leading choice for scientists and engineers. Unlike

other textbooks introducing Python, typically organised by language syntax, this book uses

many examples from across Biology, Chemistry, Physics, Earth science, and Engineering to

teach and motivate students in science and engineering. The text is organised by the tasks

and workflows students undertake day-to-day, helping them see the connections between

programming tools and their disciplines. The pace of study is carefully developed for complete

beginners, and a spiral pedagogy is used so concepts are introduced across multiple chapters,

allowing readers to engage with topics more than once. “Try This!” exercises and online

Jupyter notebooks encourage students to test their new knowledge, and further develop their

programming skills. Online solutions are available for instructors, alongside discipline-specific

homework problems across the sciences and engineering.

Johnny Wei-Bing Lin is an Associate Teaching Professor and Director of Undergraduate

Computing Education in the Division of Computing and Software Systems at the University

of Washington Bothell, and an Affiliate Professor of Physics and Engineering at North Park

University. He was the founding Chair of the American Meteorological Society’s annual

Python Symposium.

Hannah Aizenman is a Ph.D. candidate in Computer Science at The Graduate Center, City

University of New York. She studies visualization and is a core developer of the Python

library Matplotlib.

Erin Manette Cartas Espinel graduated with a Ph.D. in physics from the University of

California, Irvine. After more than 10 years at the University of Washington Bothell, she

is now a software development engineer.

Kim Gunnerson recently retired as an Associate Teaching Professor at the University of

Washington Bothell, where she taught chemistry and introductory computer programming.

Joanne Liu received her Ph.D. in Bioinformatics and Systems Biology from the University of

California San Diego.

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

“This book provides an excellent introduction to the Python language especially targeted at those

interested in carrying out calculations in the physical sciences. I especially like the strong coverage of

graphics and of good coding practice.”

Raymond Pierrehumbert, University of Oxford

“An excellent introduction to Python for scientists and engineers. Much more than teaching you how to

program with Python, it teaches you how to do science with Python.”

Eric Shaffer, University of Illinois at Urbana-Champaign

“Python has achieved an essential role in many disciplines within science, engineering, and beyond.

Students and professionals are expected to be fluent in it, and (as I see in my daily job of helping users of a

high-performance computing facility) they often struggle to reach that fluency. The authors have succeeded

in the daunting task of writing a single book to help people reach a very advanced level of fluency, starting

very gently and assuming no background. Unlike other books on the subject, An Introduction to Python

Programming for Scientists and Engineers focuses on teaching for the intended end goal of scientists and

engineers – investigating their scientific problems – not writing software for its own sake. I am looking

forward to working with the generation who will learn how to program in Python using this book!”

Davide Del Vento, NCAR Computational & Information Services Laboratory

“An Introduction to Python Programming for Scientists and Engineers introduces programming in Python

using evidence-based approaches to active learning. The exercises help both students and instructors

identify misconceptions in programming, allowing students to build a strong foundation in Python

programming. The book streamlines content such that there is a focus on mastering immediately useful

concepts, normalizing errors, and demonstrating recovery.”

Kari L. Jordan, Executive Director, The Carpentries

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

An Introduction to Python
Programming for Scientists
and Engineers

Johnny Wei-Bing Lin
University of Washington Bothell and North Park University

Hannah Aizenman
City College of New York

Erin Manette Cartas Espinel
Envestnet Tamarac

Kim Gunnerson
University of Washington Bothell

Joanne Liu
Novozymes A/S

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre,

New Delhi – 110025, India

103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of

education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/highereducation/isbn/9781108701129

DOI: 10.1017/9781108571531

© Johnny Wei-Bing Lin, Hannah Aizenman, Erin Manette Cartas Espinel,

Kim Gunnerson, and Joanne Liu 2022

This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2022

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Lin, Johnny Wei-Bing, 1972– author. | Aizenman, Hannah, 1987– author. |

Espinel, Erin Manette Cartas, 1965– author. | Gunnerson, Kim Noreen, 1965– author. |

Liu, Joanne (Joanne K.), author.

Title: An introduction to Python programming for scientists and engineers /

Johnny Wei-Bing Lin, University of Washington, Bothell, Hannah Aizenman,

City College of New York, Erin Manette Cartas Espinel, Envestnet Tamarac,

Kim Gunnerson, University of Washington, Bothell, Joanne Liu, Biota Technology Inc.

Description: First edition. | Cambridge, United Kingdom ; New York, NY :

Cambridge University Press, 2022. | Includes bibliographical references and index.

Identifiers: LCCN 2022000136 | ISBN 9781108701129 (paperback)

Subjects: LCSH: Python (Computer program language) | Computer programming. |

Engneering–Data processing. | BISAC: SCIENCE / Earth Sciences / General

Classification: LCC QA76.73.P98 L55 2022 | DDC 005.13/3–dc23/eng/20220304

LC record available at https://lccn.loc.gov/2022000136

ISBN 978-1-108-70112-9 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy

of URLs for external or third-party internet websites referred to in this publication

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents

Detailed Contents page vii

Preface xvii

To the Student xxiii

Notices and Disclaimers xxvi

Acknowledgments xxix

Part I Getting Basic Tasks Done 1

1 Prologue: Preparing to Program 3

2 Python as a Basic Calculator 8

3 Python as a Scientific Calculator 27

4 Basic Line and Scatter Plots 52

5 Customized Line and Scatter Plots 88

6 Basic Diagnostic Data Analysis 124

7 Two-Dimensional Diagnostic Data Analysis 176

8 Basic Prognostic Modeling 209

9 Reading In and Writing Out Text Data 261

10 Managing Files, Directories, and Programs 327

Part II Doing More Complex Tasks 353

11 Segue: How to Write Programs 355

12 n-Dimensional Diagnostic Data Analysis 365

13 Basic Image Processing 394

v

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

vi Contents

14 Contour Plots and Animation 439

15 Handling Missing Data 483

Part III Advanced Programming Concepts 503

16 More Data and Execution Structures 505

17 Classes and Inheritance 536

18 More Ways of Storing Information in Files 570

19 Basic Searching and Sorting 595

20 Recursion 633

Part IV Going from a Program Working to Working Well 655

21 Make It Usable to Others: Documentation and Sphinx 657

22 Make It Fast: Performance 666

23 Make It Correct: Linting and Unit Testing 683

24 Make It Manageable: Version Control and Build Management 693

25 Make It Talk to Other Languages 702

Appendix A List of Units 706

Appendix B Summary of Data Structures 708

Appendix C Contents by Programming Topic 709

Glossary 719

Acronyms and Abbreviations 726

Bibliography 727

Index 729

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Detailed Contents

Preface page xvii

To the Student xxiii

Notices and Disclaimers xxvi

Acknowledgments xxix

Part I Getting Basic Tasks Done 1

1 Prologue: Preparing to Program 3

1.1 What Is a Program and Why Learn to Program? 3

1.2 What Is Python and Why Learn This Language? 5

1.3 Software We Will Need 6

2 Python as a Basic Calculator 8

2.1 Example of Python as a Basic Calculator 8

2.2 Python Programming Essentials 10

2.2.1 Expressions and Operators 10

2.2.2 Variables 13

2.2.3 The Python Interpreter 15

2.3 Try This! 18

2.4 More Discipline-Specific Practice 24

2.5 Chapter Review 24

2.5.1 Self-Test Questions 24

2.5.2 Chapter Summary 25

2.5.3 Self-Test Answers 26

3 Python as a Scientific Calculator 27

3.1 Example of Python as a Scientific Calculator 27

3.2 Python Programming Essentials 28

3.2.1 Using Prewritten Functions 29

3.2.2 Importing Modules and Using Module Items 30

3.2.3 Writing and Using Our Own Functions 32

3.2.4 A Programmable Calculator 35

3.2.5 Python Interpreter and Code-Writing Environments for

More Complex Programs 38

3.3 Try This! 41

vii

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

viii Detailed Contents

3.4 More Discipline-Specific Practice 47

3.5 Chapter Review 47

3.5.1 Self-Test Questions 47

3.5.2 Chapter Summary 48

3.5.3 Self-Test Answers 49

4 Basic Line and Scatter Plots 52

4.1 Example of Making Basic Line and Scatter Plots 52

4.2 Python Programming Essentials 54

4.2.1 Positional Input Parameters for Required Input 55

4.2.2 Introduction to Lists and Tuples 58

4.2.3 Introduction to Strings 62

4.2.4 Introduction to Commenting and Jupyter Markdown 66

4.3 Try This! 69

4.4 More Discipline-Specific Practice 81

4.5 Chapter Review 81

4.5.1 Self-Test Questions 81

4.5.2 Chapter Summary 83

4.5.3 Self-Test Answers 85

5 Customized Line and Scatter Plots 88

5.1 Example of Customizing Line Plots 88

5.2 Python Programming Essentials 91

5.2.1 Optional Input into Functions Using Keyword Input Parameters 91

5.2.2 Customizing How the Plot Looks 93

5.2.3 Handling Multiple Figures or Curves 96

5.2.4 Adjusting the Plot Size 97

5.2.5 Saving Figures to a File 98

5.2.6 Introduction to Array Calculations 99

5.2.7 The Concept of Typing 103

5.3 Try This! 106

5.4 More Discipline-Specific Practice 117

5.5 Chapter Review 117

5.5.1 Self-Test Questions 117

5.5.2 Chapter Summary 119

5.5.3 Self-Test Answers 121

6 Basic Diagnostic Data Analysis 124

6.1 Example of Basic Diagnostic Data Analysis 124

6.2 Python Programming Essentials 126

6.2.1 More on Creating Arrays and Inquiring about Arrays 128

6.2.2 More on Functions on Arrays 132

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Detailed Contents ix

6.2.3 Going Through Array Elements and an Introduction to Loops 134

6.2.4 Introduction to Asking Questions of Data and Branching 139

6.2.5 Examples of One-Dimensional Loops and Branching 148

6.2.6 Docstrings 153

6.2.7 Three Tips on Writing Code 155

6.3 Try This! 158

6.4 More Discipline-Specific Practice 170

6.5 Chapter Review 170

6.5.1 Self-Test Questions 170

6.5.2 Chapter Summary 171

6.5.3 Self-Test Answers 173

7 Two-Dimensional Diagnostic Data Analysis 176

7.1 Example of Two-Dimensional Diagnostic Data Analysis 176

7.2 Python Programming Essentials 182

7.2.1 The Shape of Two-Dimensional Arrays 183

7.2.2 Creating Two-Dimensional Arrays 184

7.2.3 Accessing, Setting, and Slicing in a Two-Dimensional Array 186

7.2.4 Array Syntax and Functions in Two-Dimensional Arrays 190

7.2.5 Nested for Loops 191

7.3 Try This! 194

7.4 More Discipline-Specific Practice 203

7.5 Chapter Review 203

7.5.1 Self-Test Questions 203

7.5.2 Chapter Summary 205

7.5.3 Self-Test Answers 207

8 Basic Prognostic Modeling 209

8.1 Example of a Basic Prognostic Model 209

8.2 Python Programming Essentials 217

8.2.1 Random Numbers in Computers 217

8.2.2 Scalar Boolean Type and Expressions 221

8.2.3 Nested Branching 230

8.2.4 Looping an Indefinite Number of Times Using while 232

8.2.5 Making Multiple Subplots 236

8.2.6 More on Nested Loops 237

8.2.7 Conditionals Using Floating-Point Numbers 239

8.3 Try This! 241

8.4 More Discipline-Specific Practice 252

8.5 Chapter Review 252

8.5.1 Self-Test Questions 252

8.5.2 Chapter Summary 254

8.5.3 Self-Test Answers 257

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

x Detailed Contents

9 Reading In and Writing Out Text Data 261

9.1 Example of Reading In and Writing Out Text Data 262

9.2 Python Programming Essentials 267

9.2.1 Introduction to Objects 268

9.2.2 Arrays as Objects 269

9.2.3 Lists as Objects 277

9.2.4 Strings as Objects 280

9.2.5 Copying Variables, Data, and Objects 286

9.2.6 Reading and Writing Files 290

9.2.7 Catching File Opening and Other Errors 298

9.3 Try This! 300

9.4 More Discipline-Specific Practice 317

9.5 Chapter Review 317

9.5.1 Self-Test Questions 317

9.5.2 Chapter Summary 319

9.5.3 Self-Test Answers 321

10 Managing Files, Directories, and Programs 327

10.1 Example of Managing Files, Directories, and Programs 328

10.2 Python Programming Essentials 331

10.2.1 Filenames, Paths, and the Working Directory 332

10.2.2 Making and Removing Empty Directories 335

10.2.3 Moving and Renaming Files and Directories 337

10.2.4 Copying and Deleting Files and Directories 338

10.2.5 Listing the Contents of a Directory 340

10.2.6 Testing to See What Kind of “File” Something Is 341

10.2.7 Running Non-Python Programs in Python 342

10.3 Try This! 343

10.4 More Discipline-Specific Practice 347

10.5 Chapter Review 347

10.5.1 Self-Test Questions 347

10.5.2 Chapter Summary 348

10.5.3 Self-Test Answers 350

Part II Doing More Complex Tasks 353

11 Segue: How to Write Programs 355

11.1 From Blank Screen to Program: A Process to Follow 355

11.2 The Importance of Testing 360

11.3 The Importance of Style Conventions 363

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Detailed Contents xi

12 n-Dimensional Diagnostic Data Analysis 365

12.1 Example of n-Dimensional Diagnostic Data Analysis 365

12.2 Python Programming Essentials 367

12.2.1 The Shape of and Indexing n-Dimensional Arrays 368

12.2.2 Selecting Subarrays from n-Dimensional Arrays 370

12.2.3 Array Syntax and Functions in n-Dimensional Arrays 372

12.2.4 Reshaping n-Dimensional Arrays and Memory Locations of Array

Elements 374

12.2.5 Subarrays and Index Offset Operations 376

12.2.6 Triple Nested Loops and Mixing Array Syntax/Selection and Looping 378

12.2.7 Summary Table of Some Array Functions 380

12.3 Try This! 382

12.4 More Discipline-Specific Practice 386

12.5 Chapter Review 387

12.5.1 Self-Test Questions 387

12.5.2 Chapter Summary 389

12.5.3 Self-Test Answers 391

13 Basic Image Processing 394

13.1 Example of Image Processing 394

13.2 Python Programming Essentials 400

13.2.1 Reading, Displaying, and Writing Images in Matplotlib 401

13.2.2 Boolean Arrays 404

13.2.3 Array Syntax and Functions and Asking Questions of Data in Arrays 408

13.2.4 Performance of Looping and Array Syntax and Functions 414

13.2.5 The NumPy reduceMethod 416

13.2.6 Looping Through Lists of Objects 417

13.3 Try This! 419

13.4 More Discipline-Specific Practice 430

13.5 Chapter Review 431

13.5.1 Self-Test Questions 431

13.5.2 Chapter Summary 432

13.5.3 Self-Test Answers 434

14 Contour Plots and Animation 439

14.1 Example of Making Contour Plots and Animations 440

14.2 Python Programming Essentials 445

14.2.1 An Introduction to Matplotlib’s Object API 446

14.2.2 Line and Shaded Contour Plots 451

14.2.3 Using cartopy to Overlay Maps 453

14.2.4 Basic Animation Using Matplotlib 456

14.2.5 Flexible Functions and Dictionaries 459

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xii Detailed Contents

14.3 Try This! 465

14.4 More Discipline-Specific Practice 477

14.5 Chapter Review 477

14.5.1 Self-Test Questions 477

14.5.2 Chapter Summary 479

14.5.3 Self-Test Answers 481

15 Handling Missing Data 483

15.1 Example of Handling Missing Data 483

15.2 Python Programming Essentials 487

15.2.1 Approach 1: Define a Data Value as Missing and Process

with Boolean Arrays or Expressions 488

15.2.2 Approach 2: Use Series and IEEE NaN Values 490

15.2.3 Approach 3: Use Masked Arrays 492

15.2.4 Which Approach Is Better? 493

15.3 Try This! 494

15.4 More Discipline-Specific Practice 498

15.5 Chapter Review 498

15.5.1 Self-Test Questions 498

15.5.2 Chapter Summary 499

15.5.3 Self-Test Answers 501

Part III Advanced Programming Concepts 503

16 More Data and Execution Structures 505

16.1 Example of Using More Advanced Data and Execution Structures 505

16.1.1 Solution 1: Explicitly Call Functions and Store Results in Variables 506

16.1.2 Solution 2: Explicitly Call Functions and Store Results in Arrays 507

16.1.3 Solution 3: Explicitly Call Functions and Store Results in Dictionaries 508

16.1.4 Solution 4: Store Results and Functions in Dictionaries 509

16.2 Python Programming Essentials 511

16.2.1 More Data Structures 511

16.2.2 More Execution Structures 519

16.2.3 When to Use Different Data and Execution Structures 521

16.3 Try This! 523

16.4 More Discipline-Specific Practice 529

16.5 Chapter Review 530

16.5.1 Self-Test Questions 530

16.5.2 Chapter Summary 531

16.5.3 Self-Test Answers 533

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Detailed Contents xiii

17 Classes and Inheritance 536

17.1 Examples of Classes and Inheritance 536

17.1.1 Scientific Modeling Example 537

17.1.2 Scientific Bibliography Example 544

17.2 Python Programming Essentials 546

17.2.1 Defining and Using a Class 546

17.2.2 Inheritance 550

17.2.3 More Sophisticated Sorting Using sorted 553

17.2.4 Why Create Our Own Classes? 554

17.2.5 Automating Handling of Objects and Modules 557

17.3 Try This! 560

17.4 More Discipline-Specific Practice 564

17.5 Chapter Review 564

17.5.1 Self-Test Questions 564

17.5.2 Chapter Summary 566

17.5.3 Self-Test Answers 568

18 More Ways of Storing Information in Files 570

18.1 Examples of Using Other File Formats 570

18.2 Python Programming Essentials 576

18.2.1 Excel Files 576

18.2.2 pickle Files 578

18.2.3 netCDF files 579

18.3 Try This! 583

18.4 More Discipline-Specific Practice 589

18.5 Chapter Review 589

18.5.1 Self-Test Questions 589

18.5.2 Chapter Summary 590

18.5.3 Self-Test Answers 592

19 Basic Searching and Sorting 595

19.1 Examples of Searching and Sorting 595

19.2 Python Programming Essentials 598

19.2.1 Summary of Some Ways to Search and Sort 598

19.2.2 Searching and Sorting Algorithms 601

19.2.3 Basic Searching and Sorting Using pandas 611

19.3 Try This! 622

19.4 More Discipline-Specific Practice 628

19.5 Chapter Review 628

19.5.1 Self-Test Questions 628

19.5.2 Chapter Summary 629

19.5.3 Self-Test Answers 631

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xiv Detailed Contents

20 Recursion 633

20.1 Example of Recursion 633

20.2 Python Programming Essentials 635

20.2.1 Using the walk Generator 635

20.2.2 Recursion and Writing Recursive Code 637

20.2.3 More Applications of Recursion 642

20.3 Try This! 645

20.4 More Discipline-Specific Practice 649

20.5 Chapter Review 649

20.5.1 Self-Test Questions 649

20.5.2 Chapter Summary 650

20.5.3 Self-Test Answers 651

Part IV Going from a Program Working to Working Well 655

21 Make It Usable to Others: Documentation and Sphinx 657

21.1 Introduction 657

21.2 Principles of Documenting 657

21.3 General Convention for Docstrings: The NumPy Format 659

21.4 The Sphinx Documentation Generator 660

22 Make It Fast: Performance 666

22.1 Introduction 666

22.2 Preliminaries 666

22.2.1 Describing the Complexity of Code 666

22.2.2 Practices That Can Result in Inefficient Code 668

22.3 Finding the Bottlenecks Using Profilers 670

22.3.1 timeit 671

22.3.2 cProfile 672

22.3.3 line-profiler 674

22.3.4 memory-profiler 676

22.4 Fixing the Bottlenecks 678

22.4.1 Generators 678

22.4.2 Just-in-Time Compilation 680

22.5 Pitfalls When Trying to Improve Performance 682

23 Make It Correct: Linting and Unit Testing 683

23.1 Introduction 683

23.2 Linting 683

23.3 Unit Testing 686

23.3.1 unittest 687

23.3.2 pytest 688

23.4 The “Test-Driven Development” Process 690

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Detailed Contents xv

24 Make It Manageable: Version Control and Build Management 693

24.1 Introduction 693

24.2 Version Control 693

24.2.1 Using Git as a Single User 694

24.2.2 Using Git as a User Who Is Part of a Collaboration 696

24.2.3 Using Git with Branching 697

24.3 Packaging 698

24.4 Build Management and Continuous Integration 699

25 Make It Talk to Other Languages 702

25.1 Introduction 702

25.2 Talking with Fortran Programs 702

25.3 Talking with C/C++ Programs 704

Appendix A List of Units 706

Appendix B Summary of Data Structures 708

Appendix C Contents by Programming Topic 709

C.1 Introductory Programming Topics 709

C.1.1 What Is a Program and General Elements of Python 709

C.1.2 Variables and Expressions 710

C.1.3 Typing and Some Basic Types 710

C.1.4 Strings 711

C.1.5 Functions 711

C.1.6 Branching, Conditionals, and Booleans 712

C.1.7 Looping 712

C.1.8 Console Input and Output 713

C.1.9 Text File Input and Output 713

C.1.10 Exceptions 713

C.1.11 Arrays 714

C.1.12 Classes 715

C.2 Intermediate Programming Topics 715

C.2.1 Abstract Data Types and Structures 715

C.2.2 Algorithm Analysis 716

C.2.3 Searching and Sorting 716

C.2.4 Recursion 717

C.3 Other Topics 717

C.3.1 How to Program and Programming Style 717

C.3.2 Distributions and Interactive Development Environments (IDEs) 717

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xvi Detailed Contents

C.3.3 Packages and Modules 717

C.3.4 Calculation Functions and Modules 718

C.3.5 Visualization 718

Glossary 719

Acronyms and Abbreviations 726

Bibliography 727

Index 729

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface

Most introductory programming textbooks are written with the assumption that the student

thinks like a computer scientist. That is, writers assume that the student best learns pro-

gramming by focusing on the structure and syntax of programming languages. The result

is an introductory textbook that teaches programming in a way that is accessible to future

programmers and developers but not as much to scientists or engineers who mainly want to

investigate scientific problems.

This textbook is written to teach programming to scientists and engineers, not to computer

scientists.We assume that the reader has no background, formal or informal, in computer pro-

gramming. Thus, this textbook is distinct from other introductory programming textbooks

in the following ways:

• It is organized around a scientist or engineer’s workflow. What are the tasks of a scientist

or engineer that a computer can help with? Doing calculations (e.g., Chapters 2 and 6),

making a plot (e.g., Chapters 4 and 5), handling missing data (e.g., Chapter 15), and saving

and storing data (e.g., Chapters 9 and 18) are just a few of the tasks we address.

• It teaches programming, not numerical methods, statistics, data analytics, or image process-

ing. The level of math that the reader needs is modest so the text is accessible to a first-year

college student.

• It provides examples pertinent to the natural sciences and engineering. Jupyter notebooks

associated with this textbook provide structured practice using examples from physics,

chemistry, and biology, and additional notebooks for engineering are planned. For instance,

the physics notebooks include problems dealing with electromagnetic fields, optics, and

gravitational acceleration.

• Syntax is secondary. The primary goal is to teach the student how to use Python to do

scientific and engineering work. Thus, we teach as much language syntax and structure as

needed to do a task. Later, as we address more complex science and engineering tasks, we

teach additional aspects of language syntax and structure. As a result, this textbook is not

intended as a Python language reference where all (ormost) of the aspects of a given feature

of the language are addressed at the same time.

• It is paced for the beginner. This text offers many examples, explanations, and opportunities

to practice.We take things slowly because learning is a step-by-step process, not a toss-into-

the-deep-end process. As a result, this text is not concise, particularly in the beginning. It

will seem ponderous to an expert programmer. This is intentional.

xvii

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xviii Preface

Structure of the Textbook

The textbook is divided into four parts. Parts I–III, collectively, cover most of the topics of

a CS1 and CS2 sequence:

• Part I shows how to get the basic scientific and engineering workflow tasks done, including

visualization, modeling, analysis, input/output, and computer administration.

• Part II shows us how to do more advanced tasks, building off of what we have seen in

Part I. Throughout, the programming is taught through learning how to do the science

and engineering workflow tasks, so almost every chapter in Parts I–II addresses a different

science or engineering task we can use Python programming for.

• The chapters in Part III, because they cover more advanced programming concepts that are

better discussed in computer science terms, are organized more traditionally, with chapters

on more advanced data structures, classes and inheritance, basic searching and sorting,

and recursion. Nonetheless, even in Part III, we connect those concepts to science and

engineering workflow tasks.

Typical CS2 topics the textbook does not cover include linked lists, divide-and-conquer

sorting algorithms, and trees.

Part IV goes beyond the topics of a sequence of introductory programming or scientific

computing courses to describe how to turn our programs into something really robust.

Structure of the Chapters

The text takes a very uniform approach to each of the chapters in Parts I–III, as follows:

• The first section describes the task and gives some examples of using Python to accomplish

that task. These examples and problems are general enough to be understood by most

scientists and engineers.

• The second section describes why the example in the first section works the way it does: the

programming concepts and Python syntax are described and demonstrated in this section.

• The third section provides exercises/examples, often similar to the examples in the first

section, for the reader to try, along with solutions and discussion of why the solution works.

Additional programming and Python concepts are often discussed in these solutions.

• The fourth section briefly describes the online exercises and problems that are discipline-

specific (physics, chemistry, and biology), for further explication and practice.

• The final section is a chapter review containing self-test questions (with answers at the end

of the section) and a chapter summary.

Chapters 1 and 11 are the exceptions in Parts I–III, having a different organization and lacking

the exercises, questions, and chapter review as described above.

Because the chapters in Part IV cover techniques, packages, and utilities (some of which

are still evolving) that do not lend themselves to a simple scientific or engineering workflow

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface xix

example nor to exercises in a Jupyter notebook, the chapters in Part IV are not organized

using the five-section pattern most of the chapters in Parts I–III use. The aim of Part IV is

to introduce software engineering tools and practices that help us to write better and more

reliable code, in order for the reader to seek more information in works that specialize in

these topics. We hope that our introduction will whet your appetite to learn more on your

own about these tools and practices.

When we first start to learn something, we require more explanation and practice to get

comfortable with the material, learn the vocabulary, and think in new ways. The textbook is

thus structured like a pyramid:

Part IV: Going from

a Program Working

to Working Well

Part III: Advanced

Programming Concepts

Part II: Doing More Complex

Tasks

Part I: Getting Basic Tasks Done

More Repetitive

More

Concise

The chapters in Part I are the longest, and the chapters in Part IV are the shortest. The

earlier parts are more repetitive and less concise while the later parts are less repetitive and

more concise. The wider the block in the pyramid above, the more repetitive the part. The

higher up the pyramid, the more concise the part.

The Logic Behind Some Decisions on Topic Coverage and Sequence

Some of the decisions about coverage and sequence may be surprising, so the rationale is

explained here:

• By basing the structure of most of the chapters in Parts I–II on science and engineering

workflow tasks, syntax is addressed in pieces. That is, there is no single chapter on variables,

single chapter on branching, etc. Rather, those topics are covered over several chapters, in

a kind of spiral approach. Pedagogically, this is better because it allows us to learn things

a little at a time with subsequent treatments of a topic reinforcing what we learned earlier.

Learning in this way is treated as a spiral rather than as a line. But, there are at least two

costs with this method of learning. First, the first time we see a particular structure in

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xx Preface

a given chapter, because we do not fully describe that structure in that chapter, the code

examples may seem awkward andmore complicated than needed. Second, by spreading out

the description of a single structure over multiple chapters, this textbook does not function

well as a reference. What can you do to mitigate these costs? For the first, we ask for your

patience as we slowly build up the description of the topic. The code examples will become

more concise and Pythonic as the book progresses. For the second, we have written the

textbook to provide a substantial amount of cross-referencing between sections, so those

cross-references might be enough to lead you where you want to go. Skimming the Detailed

Contents, which details the subtopics included in each chapter, or Index, may also help you

find the occurrences of the topics you are interested in. Appendix C also lists the contents

of the book by programming topic.

• The “how to write a program” chapter does not come early on as it does in most

programming textbooks. We briefly mention how to write programs in Section 6.2.7 and

provide a more detailed treatment in Chapter 11. How come? If the goal of the textbook is

to teach programming by doing, rather than reading about how to “do,” it should start off

with using Python to do science and engineering tasks. Once the reader has some experience

writing short programs, they will have more context to understand advice on how to write

a longer program.

• The workflow focus influences how looping and branching are introduced in this textbook.

In most textbooks, these topics are introduced separately, in separate chapters. The result,

however, is to limit what can be done with such knowledge. An if statement by itself,

without the possibility of being visited multiple times, does not accomplish much. In this

textbook, we introduce both concepts together, in Chapter 6 on basic diagnostic data

analysis. Neither topic is treated exhaustively in this chapter, but with the introduction of

both topics in one chapter, we can vividly show how useful these structures are for using

the computer to investigate a dataset.

• Because the textbook is aimed at novices rather than students with programming experi-

ence, we had to make difficult choices regarding what concepts to introduce and when.

One result of these choices is that, particularly in earlier chapters, our code examples

are less than Pythonic in order to make our treatment of the concepts at that point in

the book clearer to novice students. We also ignore some packages and tools that can

accomplish some of the tasks we address more concisely and efficiently, in order to focus

on the learning goal at hand. Reasonable people will disagree regarding our choices, but

we wanted instructors to know we recognize the tension, and we heartily support whatever

customization will best meet the needs of your students.

Topic Sequence and Flexible Approach for Different Course Lengths

• Part I is material for approximately one quarter-long (10 week) class. The material works

well for an introductory programming course where the students have no prior experience

with programming.

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface xxi

• Parts I–II are material for approximately one semester-long (15 week) introductory pro-

gramming course.

• Parts I–III are written so later chapters build on the contents of earlier chapters. They

contain material for a two-quarter introductory programming sequence.

• The chapters in Part IV are supplemental and can be read independently and used for self-

study.

• Going in order is one way to use the textbook. However, other sequences are possible. For

instructors who want to cover the material by programming topic, the table of contents in

Appendix C shows where various aspects of the programming topics are covered.

Typesetting and Coloring Conventions

Throughout the textbook, we use different forms of typesetting and coloring to provide

additional clarity and functionality. Some of the special typesetting conventions we use

include:

• Inline source code. These are instructions interspersed in the paragraphs of the textbook

that tell Python what to do. They are typeset in a dark red, monospace font, as in a = 4.

• Inline commands to type on your keyboard or printed to the screen. Typeset in a dark red,

monospace font, as in print('hello').

• Inline generic arguments or values. These labels are placeholders to be replaced by snippets

of code or concrete values. These are typeset in a dark red, italicized, proportional font, in

between a less than sign and a greater than sign, as in <condition>.

• Blocks or listing items of source code, commands, generic arguments, or values. These are

typeset in an indented block quotation structure or listing structure in a black font.

• File contents (that are not source code). These are typeset in an indented block quotation

structure in a black, monospace font.

• File, directory, and app names. Typeset in a black, italicized, proportional font, as in

/usr/bin.

• Key terms. On first use, these are typeset in a dark blue, bold, proportional font, as in

program, and can be found in the Glossary.

General references to application, library, module, and package names are typeset the same

as regular text. Thus, references to the Matplotlib package are typeset just as in this sentence.

As most packages have unique names, this should not be confusing. In the few cases where

the package names are regular English words (e.g., the timemodule), references to themodule

will hopefully be clear from the context.

Assessment and Practice for Students

This text and the online Jupyter notebooks provide an abundance of opportunities for

students to practice what they are learning:

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xxii Preface

• Try This! exercises are designed to provide practice for students to take bite-sized, incre-

mental steps in growing their understanding the material. In a classroom setting, they are

appropriate for active learning problems, group work, and as components in programming

labs. The answers are publicly available, so these exercises are best used for practice and

development rather than summative assessment.

• The Homework Problems are provided online as Jupyter notebooks and require more

time for students to work on than the Try This!. Thus, generally speaking, they are more

appropriate for students to work on outside of class. Solutions for homework notebooks

are only provided to verified instructors.

The “To the Student” section following this Preface provides further description of the kinds

of exercises and problems that are available.

Supporting Resources and Updates to This Textbook

The textbook’s website, www.cambridge.org/core/resources/pythonforscientists, contains

updates to and supporting resources for the textbook. This includes:

• Web pages describing some topics in more detail.

• Jupyter notebooks with exercises and problems.

• Copies of the larger datasets and images referenced in this textbook.

• A list of addenda and errata.

• Links to key external sites.

All the above resources (with the exception of the images, and solutions for exercises and

problems) are accessible by both students and instructors.

The landscape of Python teaching resources is vast and constantly changing. We

provide a web page listing some of these resources at www.cambridge.org/core/resources/

pythonforscientists/instructors/.

Please let us know of any corrections by emailing us at ipyses@johnny-lin.com.

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

To the Student

An Introduction to Python Programming for Scientists and Engineers consists of two compo-

nents:

• The print/digital book that you are now reading.

• Online resources including web pages with additional content and exercises and problems

as Jupyter notebooks.

The latter are not “supplements” because they tightly link to the content and flow of the

textbook. The two pieces form an integrated whole.

Applications and Exercises

The textbook provides the following kinds of questions and problems in Parts I–III:

• Try This!. These are exercises/worked examples and are found in the print/digital book.

They are similar in complexity to the main chapter examples and contain solutions and

discussion of the solution. The Try This! sections also extend the discussion earlier in the

chapters, introducing new concepts.

• Chapter Review Self-Test Questions. These are found in the print/digital book. These are

relatively short questions that give you a first-cut assessment of your understanding of the

material in the chapter. The answers to these questions are found at the end of the chapter.

• Discipline-Specific Try This!. These are found online. They are similar to the exercises

discussed in the print/digital book in the Try This! sections.We give you a Jupyter notebook

with the Discipline-Specific Try This! and then another Jupyter notebook with answers to

the Try This!.

• Discipline-Specific Homework Problems. These are found online. They are designed to be

assigned by instructors for homework. We give you a blank Jupyter notebook with the

Problems. These Problems are generally more involved than the Discipline-Specific Try

This!.

All Discipline-Specific exercises and problems are in the form of Jupyter notebooks that

can be downloaded to your own computer and run locally. The Discipline-Specific Jupyter

notebooks are at www.cambridge.org/core/resources/pythonforscientists/jupyter-notebooks/.

Currently, notebooks for biology, chemistry, and physics are provided. We hope to include

notebooks for other disciplines in the future. Details on using Jupyter notebooks begin in

Section 2.2.3.

xxiii

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xxiv To the Student

The larger datasets referenced in this textbook and the Jupyter notebooks are found at

www.cambridge.org/core/resources/pythonforscientists/datasets/. These are freely available

for download.

Using the Textbook

We recommend that you approach the chapters in the following manner.

First, read the main chapter example. If possible, type in the code for the example and

see what you get. This is more doable for earlier chapters, where the code is shorter. In later

chapters, the benefits of typing in the code are probably not worth the time to key it all in. As

you read the main chapter example, you might not understand everything in the example. If

so, that is okay. The purpose of the main chapter example is not to teach you the concepts in

the chapter. That is what the rest of the chapter is for. The main chapter example is there to

give you a sense of how we can use Python to solve a particular science or engineering task

and to motivate the rest of the chapter’s discussion and exercises.

Second, read the Python Programming Essentials section. In most chapters, this section

will have small examples you can type in. Please do so. This will help your learning.

Third, do the Try This!. Do not read read the solution that immediately follows until you

have done the Try This!. If you just read the Try This! and skip immediately to the solution,

you will circumvent the learning process. Doing and working problems really help us learn!

Also, remember the discussion of these exercises contains additional material regarding the

chapter’s topics. Do not skip the Try This! as if they are optional, “mere examples.”

Fourth, do as many of the Discipline-Specific Try This! you have the time to do. After

you do them, look at their solutions and see if you can explain the reason for any differences

between your solution and the solution notebook.

Fifth, to increase the sophistication of your understanding of the topics involved, do at

least a few of the Discipline-Specific Homework Problems. The solutions are only available

to instructors, but the practice itself will help with your learning.

The Chapter Review Self-Test Questions can be used to test your understanding of the

material. You might want to use them for studying for exams, but you do not need to wait

for an exam to go through them. As you are reading the textbook, these questions might also

help give you a sense of your comprehension. Note, though, that these questions are not very

difficult, so you should not conclude that if you are able to answer all the questions easily that

you will do fine on an exam.

The Chapter Summary provides one additional opportunity for you to see the topics again.

It should not be used as a substitute for taking your own notes or creating your own study

sheet for an exam.

One final piece of advice.Wherever we suggest you read the text, we are implicitly assuming

you will read slowly. Really, really slowly. When we read code, we have to go line-by-line and

term-by-term. We have to ask what the state of the variables are before that line, what the

state of the variables are after that line, and what did the line do to cause (or not cause) any

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

To the Student xxv

changes. When we encounter code, we should ask how the program would behave differently

if wemade a change to the values and order of the code. Andwe should take notes (by hand, if

possible, because we learnmore that way) on what we have read andwrite down any questions

we have as they come to us. If we do not write down questions immediately, we will forget

them and falsely believe we understand the material. We have to actively engage the text.

We cannot read a programming textbook (or anymath, science, or engineering textbook) as

if it were a novel. When we read a novel, we can just read the words and sentences themselves,

skimming if we are in a rush. The prose itself tells us about the characters, plot, and setting.

But in a programming textbook, this kind of readingwill not work. Skimming a programming

textbook is a recipe for disaster. We have to unpack and excavate the meaning of the code

and the text describing the code. If we do not, our understanding will be limited. So, read

s-l-o-w-l-y! �

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Notices and Disclaimers

Mark and Trademark Acknowledgments

Anaconda, Anaconda Navigator, Conda, and Numba are marks and/or registered trade-

marks of Anaconda, Inc. Apple,Mac,Mac OS, andOSX are registered trademarks of Apple

Inc. Azure, Excel, Microsoft, PowerShell, Windows, and Word are registered trademarks of

Microsoft Corporation in the United States and/or other countries. ChromeTM browser is a

trademark of Google LLC. Debian is a registered trademark of Software in the Public Inter-

est, Inc. Django is a trademark of the Django Software Foundation. Git is either a registered

trademark or trademark of Software Freedom Conservancy, Inc., corporate home of the Git

Project, in the United States and/or other countries. GITHUB® is an exclusive trademark

registered in the United States by GitHub, Inc. GitLab is a registered trademark of GitLab,

Inc. GNOME® is a trademark of the GNOME Foundation. GNU is an operating system

supported by the Free Software Foundation. Jupyter®, JupyterHub, and derivative word

marks are trademarks or registered trademarks of NumFOCUS. Kubernetes® is a registered

trademark in the United States and/or other countries of The Linux Foundation. LibreOffice

is a registered trademark of The Document Foundation. Linux is a trademark owned by

Linus Torvalds. Matlab and MathWorks are registered trademarks of The MathWorks, Inc.

PyCharm1 is a trademark of JetBrains s.r.o. Python is a registered trademark of the Python

Software Foundation. Stack Overflow is a trademark of Stack Exchange Inc. Ubuntu is a

registered trademark of Canonical Ltd. All other trademarks and marks mentioned in this

book are the property of their respective owners. Any errors or omissions in trademark and/or

other mark attributions are not meant to be assertions or denials of trademark and/or other

mark rights.

Copyright Acknowledgments

Screenshots of Chrome browser sessions (e.g., Figures 2.3, 3.7, 3.8, 3.9, 4.6, and 4.7) include

elements from Google LLC and are used by permission.

Images from Volkman et al. (2004) in Chapter 13 are copyright © 2004 by Volkman

et al. and are used by permission under the conditions of the Creative Commons Attribution

License. Volkman et al. do not specify the license version, but the Creative Commons

1 www.jetbrains.com.

xxvi

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Notices and Disclaimers xxvii

Attribution 4.0 International Public License is available at https://creativecommons.org/

licenses/by/4.0/legalcode. The images in the present work have been modified from their

original form in Volkman et al.

The screen shots in Figures 2.3, 3.7, 3.8, 3.9, 21.2, 21.3, and 21.4 are reprinted with

permission from Apple Inc.

The code in Figure 24.1 is © 2010–2021, Holger Krekel and others. The code is used by

permission under the conditions of the MIT License. The license agreement is available at

https://github.com/tox-dev/tox/blob/master/LICENSE.2

Code portions and ideas referenced throughout the text are footnoted or otherwise

referenced in the text. The code portions and ideas in Chapter 14, however, are built off

of longer blocks of code as well as a larger variety of code sources, most prominently

the cartopy manual (Met Office, 2010–2015), licensed under an Open Government License

(www.nationalarchives.gov.uk/doc/open-government-licence/version/2/), and the Matplotlib

documentation (matplotlib.org/contents.html; also see Hunter (2007)). Traditional footnot-

ing and referencing does not work as well for this kind of synthetic work. Thus, we cite those

references here and at www.cambridge.org/core/resources/pythonforscientists/refs/.

Use in this book of information from copyrighted sources is by permission (and is noted

either in this acknowledgments section or in the respective figure captions) or is usage believed

to be covered under Fair Use doctrine.

Data and Other Usage Acknowledgments

This work includes data from the Mikulski Archive for Space Telescopes (MAST) (e.g., in

Chapter 1). STScI is operated by the Association of Universities for Research in Astronomy,

Inc., under National Aeronautics and Space Administration (NASA) contract NAS5-26555.

This includes data collected by the Kepler Mission. Funding for the Kepler Mission is

provided by the NASA Science Mission directorate.

This work includes output from simulations using the molecular dynamics simulation

package NAMD (Phillips et al., 2005). NAMD was developed by the Theoretical and Com-

putational Biophysics Group in the Beckman Institute for Advanced Science and Technology

at the University of Illinois at Urbana-Champaign. The official NAMD web page is at

www.ks.uiuc.edu/Research/namd/.

This work includes surface/near-surface air temperature data (e.g., in Section 7.1) that is

from National Centers for Environmental Prediction (NCEP) Reanalysis data provided by

the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their website at www.esrl.noaa

.gov/psd.

This work includes data from the UCI Machine Learning Repository (Dua and Graff,

2019). The repository is at https://archive.ics.uci.edu/ml.

2 Accessed January 11, 2021.

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xxviii Notices and Disclaimers

Section 13.3 includes images from Patel and Dauphin (2019), published by NASA’s Earth

Observatory, which were created using Black Marble data from Ranjay Shrestha at NASA’s

Goddard Space Flight Center and Landsat data from the U.S. Geological Survey.

World Time Buddy (www.worldtimebuddy.com) provided help with time zone conversions.

(See Sections 7.1 and 12.1.)

Data used for displaying natural features and political boundries (in Chapter 14)

are provided by OpenStreetMap (© OpenStreetMap contributors) and Natural Earth

(public domain). OpenStreetMap data are available under the Open Database Licence

(www.openstreetmap.org/copyright). Free vector and raster map data are available at

naturalearthdata.com.

Data in this work are also acknowledged in descriptions in the main text and footnotes. All

data and images in this work are used by permission.Many of thesematerials are in the public

domain or are otherwise freely available for republication and reuse. Please see the sources of

the data for details.

Data presented in this work that are not explicitly attributed to a source should be

considered fictional and created by the authors for the purposes of illustration or teaching.

They must not be considered genuine or accurate descriptions of any natural or artificial

phenomena or system. Most (though not all) occurrences of such data are accompanied by

the term “fictitious” or “pretend.”

Disclaimers

Although we have worked hard to make the text, code, and related online resources (together,

“Resources”) accurate and correct, the Resources are provided “as-is,” without warranty of

any kind, express or implied, including but not limited to the warranties of merchantability,

fitness for a particular purpose and noninfringement. In no event shall the authors or

copyright holders be liable for any claim, damages or other liability, whether in an action

of contract, tort or otherwise, arising from, out of or in connection with the Resources or the

use or other dealings in the Resources.3

Permission to usemarks, trademarks, copyrightedmaterials, or any othermaterials by their

owners does not imply an endorsement of that use or of the Resources.

3 Copied and adapted from the MIT License, as listed on Opensource.org, https://opensource.org/licenses/MIT

(accessed July 14, 2021).

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Acknowledgments

We are grateful for the editorial help of Charles Howell, Matt Lloyd, Lisa Pinto, andMelissa

Shivers at Cambridge University Press. We thank Spencer Cotkin for editorial suggestions,

most we have implemented and that have made the book much better. We thank Beverley

Lawrence for copyediting the text. A number of anonymous reviewers provided helpful

feedback which have been incorporated into the text.

We are thankful for Cynthia Gustafson-Brown’s assistance on this project, particularly in

finding and providing some of the description in the Section 13.1 example.

We are appreciative of conversations with and assistance by: Bill Erdly,Michael Grossberg,

Charity Flener Lovitt, Laurence Molloy, Hansel Ong, Jim Phillips, and Rob Nash. Whether

through publications, workshops, conferences, or discussions, the communities we are a part

of – personal, workplace, disciplinary, and, of course, the Python community – contributed

ideas, encouragement, and support.

Parts of this book are based on the book, A Hands-On Introduction to Using Python in the

Atmospheric and Oceanic Sciences,4 slides from the 2020 American Meteorological Society’s

Beginner’s Course to Using Python in Climate andMeteorology,5 and the set of notes, Lecture

Notes on Programming Theory for Management Information Systems.6 These resources are

by Johnny Lin and the acknowledgments made in those resources also apply to this text.

We are grateful for those who gave us permission to use material they created. These are

acknowledged in the Notices section, the captions of the included or adapted figures, or in

the online resources.

4 Lin (2012).
5 Not formally published.
6 Lin (2019).

xxix

www.cambridge.org/9781108701129
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xxx Acknowledgments

I thank my wife Karen, and my children Timothy, James, and Christianne for their

encouragement and love. S.D.G.

Johnny Wei-Bing Lin

Bellevue, Washington

I thank my advisor, Professor Michael Grossberg, for all his help and the AMS Python

community and Matplotlib Development Team for their influence and conversations on all

things code.

Hannah Aizenman

New York City, New York

I thank my husband Vicente, my family Duffy, Cheryl, and Sara, and my friends Valerine,

Kaitlyn, and Alanna for all of their love and support.

Erin Manette Cartas Espinel

Kenmore, Washington

I thank Samantha Gunnerson for her help reading through notebooks to give me advice,

Eric Gunnerson for his support as well as technical skills, and Dr. Paola Rodríguez Hidalgo

for listening to me talk about the different Python writing I was doing during this process.

Kim Gunnerson

Bellevue, Washington

I thank my family for their support and Cynthia Gustafson-Brown for providing several

of the More Discipline-Specific Practice problems in Chapters 2 and 3.

Joanne Liu

San Diego, California

www.cambridge.org/9781108701129
www.cambridge.org

