
Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Part I

Getting Basic Tasks Done

www.cambridge.org/9781108701129
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

www.cambridge.org/9781108701129
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1 Prologue: Preparing to Program

The Preface and To the Student sections describe how and why we structured the book and

resources the way we did and how to make the most out of them. In the present chapter, we

set the stage for the study of programming as an endeavor and Python as a language. We also

describe what software needs to be installed in order to make use of the rest of the book.

1.1 What Is a Program and Why Learn to Program?

A program is a set of instructions telling a computer what to do. Every action a computer

takes, from making a calculation to displaying a graph, is ultimately controlled by a program

that a human being writes. This program consists of a file with commands. The computer

reads that file and executes the commands one at a time.

The problem is that the language the computer understands is different from the languages

that human beings know. Natural language – the language of people – is incredibly rich

and is capable of describing so much more than facts and figures. Computer languages, in

contrast, are extremely simple with very limited vocabularies and capabilities. This is because

a computer can only do a few things:

• Save values.

• Do calculations.

• Ask if something is true or false.

• Accept input (e.g., from a keyboard) and output (e.g., to a screen).

• Do a task over and over again.

In one sense, everything a computer does – whether sending an email, playing a cat video, or

modeling the Earth’s climate – is the result of many programmers breaking down whatever

complex tasks they want the computer to do into some combination of the above capabilities.

So, learning how to program means learning how to break down the task we want to do into

(very) simple pieces and how to express those tasks in a language – a programming language –

that the computer understands. As an aside, we often talk about code or codingwhen referring

to the task of programming. Those terms are another way of referring to the syntax of

computer languages and the task of writing programs in those languages, respectively.

For a scientist or an engineer, what is the purpose of learning to program? Few scientists

or engineers are interested in becoming software developers, and the foundations of modern

science were developed using pen, paper, and the human mind. Newton and Darwin did their

3

www.cambridge.org/9781108701129
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

4 1 Prologue: Preparing to Program

calculations without calculators, let alone computers. Today, great science and engineering

work can still be done without needing to program a computer. For work involving small

datasets or analytical mathematical solutions, pen and paper (and a calculator or spreadsheet)

is often enough.

Today, however, we enjoy more data than our predecessors would have believed possible:

measurements from satellites, in-situ sensors, or large-scale experiments; models of fluid

flow, structures, or biological systems. A spreadsheet is often inadequate to deal with such

large datasets. At the same time, the sciences and engineering have been the recipients of

an explosion in computational tools for calculations of all kinds. Whether we are looking

for a traditional statistical analysis routine or want to implement the latest machine learning

algorithm, someone else has written a tool we can use. The software engineering community

has also developed tools and legal frameworks that enable computational tools to be easily

shared and integrated into anyone’s programs. The result is that a person who knows how to

program can do more science and engineering.

A picture is worth a thousand words, so consider Figure 1.1: This is an image showing

the light received by the National Aeronautics and Space Administration (NASA) Kepler

Mission’s spacecraft (a space telescope designed to search for exoplanets) from the star

Figure 1.1 Light flux from Kepler-10 during quarter 4.

www.cambridge.org/9781108701129
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.2 What Is Python and Why Learn This Language? 5

Kepler-10, aroundwhich orbits the first rocky exoplanet discovered by the spacecraft (Kepler-

10b).1 The Python code to read in the data via the Internet from the Mikulski Archive for

Space Telescopes (MAST), where the archived data resides, and create the plot is as follows:

1 from lightkurve import KeplerTargetPixelFile

2 data = KeplerTargetPixelFile.from_archive('Kepler-10', quarter=4)

3 data.plot(scale='log')

That’s it! Three lines of code does it! This is why scientists and engineers need to learn to

program.We will not unpack these lines of code right now, but after going through the book,

we will have the tools to understand their meaning and use.

1.2 What Is Python and Why Learn This Language?

There are many programming languages, and every language has its own strengths and

weaknesses. But it is difficult to learn programming in the abstract. To learn programming,

we have to use some particular language. Once we learn one language, other languages are

more easily learned, but we have to start somewhere. The language we will use in the present

work is Python.

While there is no perfect programming language, the Python language is extremely power-

ful and versatile while at the same time also easily understood and learned. Code written in

Python is very clear, so clear that it almost reads like naturally spoken English. For scientists

and engineers, Python has capabilities that make it useful for analyzing data and solving

mathematically based problems. There is a large community of scientific Python users and

developers that are constantly adding to the capabilities of the language to do science. As we

go through the text, we will see these characteristics and features of Python. For now, just

trust us that Python is a good place to start.

There is, however, one additional reason for learning Python: it is free. Python is an open

source programming language, that is, a programming language whose underlying code is

itself available and open to anyone to examine and use for their own purposes. Python is free

in the sense of “freedom.” Python is also free in the sense of “no cost.” As a result, if we

have a connection to the Internet, we can obtain a copy of everything needed to run Python

programs. We can use the Python language for our own programs without worrying about

whether we can purchase a (possibly) expensive license for a specialized data analysis language

or whether a program we write today will be able to be run tomorrow if we distribute it to

others or move to another computer ourselves. After learning Python, we can be confident

1 This example is slightly altered from the one given in the documentation of the lightkurve package (see Vinícius

et al. (2018)), a Python package used to access data from the Kepler Mission. That example is at http://lightkurve.

keplerscience.org/tutorials/2.02-recover-a-planet.html (accessed August 15, 2018). Information about the Kepler

Mission is at www.nasa.gov/mission_pages/kepler/overview/index.html (accessed August 20, 2018).

www.cambridge.org/9781108701129
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 1 Prologue: Preparing to Program

(as humanly possible) that we will be able to use the language throughout our lives for

whatever scientific or engineering purpose – or business, artistic, literary, etc., purpose –

we wish.

1.3 Software We Will Need

In this book, we will learn to write Python programs, but in order to get our computer to

run (or execute the commands of) our programs, we need a little more than the program

instruction files themselves. Python most usefully comes as part of a distribution of utility

programs and tools.

We have written this text assuming version 3.x (e.g., 3.6, etc.) of Python has been installed,

through a recent installation of the Anaconda distribution.2 Installing the Anaconda distri-

bution is preferable to installing Python from the Python Software Foundation’s website, or

to rely on the version of Python that is included with some operating systems, because the

Anaconda distribution includes packages and utility programs that are essential for scientists

and engineers.

The Anaconda distribution download page contains detailed directions on how to down-

load and install the software. We provide an up-to-date link to the page at www.cambridge

.org/core/resources/pythonforscientists/refs/, ref. 1. This edition is free to individuals and can

be installed without administrator privileges. It can be installed on the same computer or

account at the same time as another installation of Python and is available for all major

operating systems (Windows, Mac OS X, and Linux).

When installed out-of-the-box, the Anaconda distribution provides most of what

we need. Through the distribution’s tools, we can also add additional utility programs

and libraries (called packages) to the distribution, as desired. Use Anaconda Nav-

igator to install additional packages and manage packages. Up-to-date links to the

Navigator documentation and getting started guide are at www.cambridge.org/core/

resources/pythonforscientists/refs/, refs. 2 and 3 respectively.

Here is a list of additional packages that are used in the current text that might not come

with the default installation of the Anaconda distribution. In parentheses, we note which

chapters or parts of these packages are first and/or mainly used:

• cartopy (Chapter 14),

• line-profiler (Part IV),

• memory-profiler (Part IV),

• netCDF4 (Chapter 18),

• numba (Part IV),

• pytest (Section 23.3.2).

2 Most of the code in this book, particularly in the earlier chapters, will also work with Python 2.7.x. However,

although there is some scientific and engineering legacy code still written in Python 2.7.x, all major packages have

migrated to version 3.x.

www.cambridge.org/9781108701129
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-70112-9 — An Introduction to Python Programming for Scientists and Engineers
Johnny Wei-Bing Lin , Hannah Aizenman , Erin Manette Cartas Espinel , Kim Gunnerson , Joanne Liu 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.3 Software We Will Need 7

To run the code in the sections listed above, please add these packages. Note the line-profiler

andmemory-profiler packages are also referred to as line_profiler andmemory_profiler, using

underscores instead of hyphens.

If any of the packages above are already installed, Anaconda Navigator will tell us when

we try to install it, so we do not have to worry about overwriting anything. If we do not know

whether we have all the packages we need, no worries. If while we are running a Python

program we receive a message such as:

ModuleNotFoundError: No module named 'netCDF4'

we can fix that by installing the package or module named, and then rerun our program.

That should be it for the preliminaries. We are ready now to begin our journey in learning

Python programming. We start with using Python to fulfill that basic computational need of

a scientist or engineer, the need to have a good calculator.

www.cambridge.org/9781108701129
www.cambridge.org

