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The study of incomplete fusion (ICF) reactions in heavy ion (HI) interactions at energies below 
10 MeV per nucleon is a topic of resurgent interest. At such low energies, near and/or just above 
the fusion barrier, the complete fusion (CF) of the interacting ions is expected to be the most 
dominant process; however, experiments carried out during the last decade or so have indicated 
that a significant part of the interaction proceeds through ICF process. Some theories have 
been proposed to explain the process of incomplete fusion but none of them could successfully 
reproduce the experimental data at energies < 10 MeV/A.  In order to understand the dynamics of 
such low energy ICF processes and to develop a viable theoretical frame work, our group carried 
out extensive and complementary experiments on the topic during the last decade or so. The 
monograph presents the details of these experiments and the analysis of the data.

The presentation has five chapters; Chapter-1 gives a historical background of the subject 
and discusses the motivation for the work. Chapter-2, entitled ‘Theoretical Tools, Reaction 
Mechanism and Computer Codes’ is intended to develop a sound theoretical background of the 
subject. Important features of computer codes available in the market for theoretical simulation 
are discussed in this chapter. All experimental details, including the methodology, experimental 
setups, formulations used for data reduction etc., are given in Chapter-3. The Chapter-4, entitled 
‘Measurements’ contains the details of the measurements of Excitation Functions (EFs), Recoil 
Range Distributions (RRDs), Angular Distributions (ADs), Spin Distributions (SDs) and Feeding 
Intensity Profiles (FIPs) of reaction residues. Each measurement is discussed in detail and the 
recorded experimental data is presented both in tabular form as well as in graphical form. Chapter-5, 
is ‘Results and Conclusions’ which provides a detailed discussion of the results obtained from the 
critical analysis and evaluation of the data obtained in the present set of experiments. Conclusions 
regarding the dependence of ICF component on various entrance channel parameters, presented in 
this chapter may be of considerable value in developing a theoretical frame work for HI reactions 
at energies below 10 MeV per nucleon. The experiments detailed in this document were carried 
out by our research group at the Physics Department, Aligarh Muslim University, Aligarh, India, 

Preface
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xxii Preface

in collaboration with members of the Nuclear Physics Group of the Inter University Accelerator 
Centre (IUAC), New Delhi, India. The Appendix provides a list of some of the important research 
publications on the subject published by our research group.

During our interaction with fresh graduates desirous of having a career in accelerator based 
physics in general and experimental nuclear physics in particular, it was realized that they need 
a document that may spell out most details for carrying out experiments using accelerated 
beams. These details, such as, designing an experiment, preparation of samples for irradiation, 
their thickness measurement, choice of detectors, calibration of detectors, data acquisition and 
analysis etc., are generally available only in research publications and that too in brief. The present 
document is written with the view to provide young entrants a detailed description for carrying 
out experiments with accelerated beams. Details of four different types of experiments mentioned 
above are provided in this document. As such, the monograph is expected to serve as a handbook, a 
ready reference for beginners in the field. It is hoped that the monograph will be of interest both to 
new entrants as well as to experienced researchers in the field of low energy heavy ion interactions. 
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