### Fundamentals and Applications of Heavy Ion Collisions

Experiments with accelerated heavy ion beams of energy less than 10 MeV per nucleon require an understanding of the basic concepts of reaction dynamics as well as of experimental technique and methods of preparing samples for irradiation, accurate measurement of sample thickness, sample irradiation, selection and calibration of detectors etc. In depth discussion of models like, promptly emitted particles model (PEPs), breakup fusion model (BUF), hot spot model, Harp Miller and Berne (HMB) and geometry dependent hybrid model etc., offer a comprehensive and up-to-date discussion to the theory and applications of heavy ion collisions at lower energies.

Experimental details of sample preparation, irradiation by HI beams, post irradiation analysis, measurement of recoil range distribution (RRD) and angular distribution of heavy residues in offbeam experiments and of spin distribution in the in-beam experiments are all covered in detail in this monograph. The application of heavy ion interactions including the study of highly rotating neutron deficient nuclei, production of super heavy nuclei and production of specific isotopes of medical applications etc. is presented for the benefit of readers.

**R. Prasad** is a retired Emeritus Professor of Physics from Aligarh Muslim University, Aligarh, India. He has more than 40 years experience in teaching courses on nuclear physics, electronics, thermal physics, quantum mechanics and modern physics at undergraduate and graduate levels. His field of specialization is experimental nuclear physics in which he has published more than hundred research papers. He has also authored the book *Classical and Quantum Thermal Physics*.

**B. P. Singh** is a Professor of Physics at Aligarh Muslim University, Aligarh, India. He has more than 25 years teaching and research experience. He has taught courses on nuclear physics, heavy-ion physics, mechanics, electronics, electricity and magnetism, thermal and statistical physics at undergraduate and graduate levels. His areas of research include experimental nuclear physics with special interest in pre-equilibrium emission in nuclear reactions and incomplete fusion reactions in heavy ion interactions, on which he has published more than hundred research papers.

# Fundamentals and Applications of Heavy Ion Collisions

**Below 10 MeV/ Nucleon Energies** 

R. Prasad B. P. Singh





Shaftesbury Road, Cambridge CB2 8EA, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India 103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467 Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108499118

© R. Prasad and B. P Singh 2018

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

A catalogue record for this publication is available from the British Library

ISBN 978-1-108-49911-8 Hardback

Additional resources for this publication at www.cambridge.org/9781108499118

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

# Contents

| Fig | ures    |                                                                 | ix    |
|-----|---------|-----------------------------------------------------------------|-------|
| Ta  | bles    |                                                                 | xix   |
| Pre | Preface |                                                                 |       |
| Ack | enowle  | edgements                                                       | xxiii |
| 1.  | Intr    | oduction                                                        |       |
|     | 1.1     | Background                                                      | 1     |
|     |         | 1.1.1 Artificial radioactivity                                  | 4     |
|     |         | 1.1.2 Neutron era                                               | 4     |
|     | 1.2     | Classification of Ions and Research with Accelerated Light Ions | 6     |
|     | 1.3     | Accelerated Heavy Ions                                          | 9     |
|     | 1.4     | Special Features of Heavy Ions                                  | 12    |
|     | 1.5     | Motivation for this Book                                        | 33    |
| 2.  | The     | oretical Tools, Reaction Mechanism and Computer Codes           |       |
|     | 2.1     | Complete Fusion of Heavy Ions                                   | 36    |
|     |         | 2.1.1 Hauser–Feshbach formalism for spinless particles          | 38    |
|     |         | 2.1.2 Level width and level separation                          | 42    |
|     |         | 2.1.3 Evaporation spectra                                       | 46    |
|     |         | 2.1.4 Width fluctuation correction                              | 48    |
|     |         | 2.1.5 Effective transmission coefficients                       | 49    |
|     |         | 2.1.6 De-excitation sequence of the compound nucleus            | 52    |
|     |         |                                                                 |       |

#### vi Contents

3.

| 2.2 | The Pre-equilibrium Emission in Statistical Nuclear Reactions          | 54  |
|-----|------------------------------------------------------------------------|-----|
|     | 2.2.1 The exciton model                                                | 57  |
|     | 2.2.2 The Harp–Miller–Berne (HMB) model                                | 65  |
|     | 2.2.3 The hybrid model                                                 | 66  |
|     | 2.2.4 The intra-nuclear cascade model                                  | 67  |
|     | 2.2.5 The totally quantum mechanical model of pre-equilibrium emission | 68  |
| 2.3 | The Incomplete Fusion of Heavy Ions                                    | 70  |
|     | 2.3.1 The hot spot model                                               | 71  |
|     | 2.3.2 The promptly-emitted particles (PEPs) model                      | 71  |
|     | 2.3.3 The sum rule model                                               | 75  |
|     | 2.3.4 Breakup fusion model (BUF)                                       | 80  |
| 2.4 | Computer Codes                                                         | 81  |
|     | 2.4.1 Computer code PACE 4                                             | 82  |
|     | 2.4.2 Computer code CASCADE                                            | 83  |
|     | 2.4.3 Computer codes GNASH and McGNASH                                 | 84  |
|     | 2.4.4 Computer code ALICE 91 and ALICE IPPE                            | 85  |
|     | 2.4.5 The computer code EMPIRE                                         | 87  |
| Exp | perimental Details and Formulations                                    |     |
| 3.1 | Introduction                                                           | 88  |
| 3.2 | Formulations for Measuring Cross-section                               | 89  |
| 3.3 | Experimental Details                                                   | 92  |
|     | 3.3.1 Off-beam experiments                                             | 92  |
|     | 3.3.2 Pelletron accelerator at the IUAC, New Delhi                     | 94  |
|     | 3.3.3 Experimental details for the measurement of excitation functions | 96  |
| 3.4 | Target Preparation                                                     | 100 |
| 3.5 | Sample Irradiation by HI Beam                                          | 104 |
| 3.6 | Post-irradiation Analysis                                              | 107 |
|     | 3.6.1 Calibration of HPGe detector and efficiency measurement          | 107 |
|     | 3.6.2 Identification of reaction residues                              | 110 |
| 3.7 | Measurement of Recoil Range Distribution (RRD) of Heavy Residues       | 113 |
|     | 3.7.1 Target and catcher foil preparation for RRD measurements         | 115 |
| 3.8 | Measurement of Angular Distribution of Residues                        | 120 |
| 3.9 | In-beam Experiments                                                    | 122 |
|     | 3.9.1 Target preparation                                               | 122 |
|     | 3.9.2 Experimental setup used                                          | 123 |
|     | 3.9.3 The gamma detector array (GDA) setup                             | 124 |
|     | 3.9.4 Charged particle detector array (CPDA) setup                     | 126 |
|     | 3.9.5 Irradiations for spin distribution measurement                   | 128 |

4

Measurements

|    | 4.1  | Measu   | rement of Excitation Functions and their Analysis                                                                                   | 131 |
|----|------|---------|-------------------------------------------------------------------------------------------------------------------------------------|-----|
|    |      | 4.1.1   | Reactions initiated by <sup>12</sup> C beam                                                                                         | 139 |
|    |      | 4.1.2   | Reactions initiated by <sup>13</sup> C beam                                                                                         | 163 |
|    |      | 4.1.3   | Reactions initiated by <sup>14</sup> N beam                                                                                         | 169 |
|    |      | 4.1.4   | Reactions initiated by <sup>16</sup> O beam                                                                                         | 175 |
|    |      | 4.1.5   | Reactions initiated by <sup>18</sup> O beam                                                                                         | 192 |
|    |      | 4.1.6   | Reactions initiated by <sup>19</sup> F beam                                                                                         | 195 |
|    | 4.2  | Measu   | rement of Recoil Range Distributions (RRD) and their Analysis                                                                       | 203 |
|    |      | 4.2.1   | Recoil range distribution for the system <sup>12</sup> C+ <sup>159</sup> Tb                                                         | 204 |
|    |      | 4.2.2   | Recoil range distribution for the system <sup>16</sup> O+ <sup>159</sup> Tb                                                         | 213 |
|    |      | 4.2.3   | Recoil range distribution for the system <sup>16</sup> O+ <sup>169</sup> Tm                                                         | 216 |
|    |      | 4.2.4   | Recoil range distribution for the system <sup>16</sup> O+ <sup>181</sup> Ta                                                         | 220 |
|    | 4.3  | Measu   | rement of Angular Distribution of Heavy Residues and their Analysis                                                                 | 225 |
|    |      | 4.3.1   | Angular distribution of residues emitted from the system $^{16}\mathrm{O}+^{169}\mathrm{Tm}$                                        | 225 |
|    |      | 4.3.2   | Angular distributions of the residues emitted from <sup>16</sup> O+ <sup>27</sup> Al system                                         | 227 |
|    | 4.4  | Measu   | rement of Spin Distribution and Feeding Intensity Profiles                                                                          | 229 |
|    |      | 4.4.1   | Measurement of spin distribution and feeding intensity for the system $^{16}\mathrm{O}+^{169}\mathrm{Tm}$                           | 230 |
|    |      | 4.4.2   | Measured spin distribution and feeding intensity profile for the $^{\rm 12}{\rm C}+^{\rm 169}{\rm Tm}$ system                       | 235 |
|    | 4.5  | Measu   | rement of Pre-equilibrium Component in Heavy Ion Reactions at < $10 \text{ MeV/n}$                                                  |     |
|    |      | Energy  | 7                                                                                                                                   | 241 |
|    |      | 4.5.1   | Measurement of pre-equilibrium component in the <sup>16</sup> O+ <sup>169</sup> Tm system                                           | 242 |
|    |      | 4.5.2   | Measurement of pre-equilibrium components in ${}^{16}O+{}^{159}Tb$ , ${}^{16}O+{}^{169}Tm$ and ${}^{16}O$<br>+ ${}^{181}Ta$ systems | 245 |
| 5. | Resu | lts and | l Conclusions                                                                                                                       |     |
|    | 5.1  | Incom   | plete Fusion below 10 MeV/A Energy and its Dependence on Entrance                                                                   |     |
|    |      | Chann   | el Parameters                                                                                                                       | 249 |
|    |      | 5.1.1   | Dependence of ICF on projectile structure and incident energy                                                                       | 252 |
|    |      | 5.1.2   | Dependence of ICF on mass asymmetry                                                                                                 | 254 |
|    |      | 5.1.3   | Dependence of ICF on $\alpha$ Q value of the projectile                                                                             | 255 |
|    |      | 5.1.4   | Dependence of ICF on the Coulomb factor $(Z_{p}Z_{T})$                                                                              | 257 |
|    |      | 5.1.5   | Angular momentum $(\ell)$ distribution and mean input angular momentum for                                                          |     |
|    |      |         | complete and incomplete fusion reactions                                                                                            | 258 |
|    | 5.2  | Pre-eq  | uilibrium Emission in Heavy Ion Reactions at Energies < 10 $MeV/A$                                                                  | 260 |
|    | 5.3  | Applic  | ations of Heavy Ion Reactions at Energy < 10 MeV/A                                                                                  | 263 |
|    |      | 5.3.1   | Study of high spin states populated via incomplete fusion                                                                           | 263 |
|    |      | 5.3.2   | Incomplete fusion and synthesis of super heavy elements                                                                             | 265 |
|    |      | 5.2.3   | Incomplete fusion and production of isotopes of special interest                                                                    | 267 |
|    |      |         |                                                                                                                                     |     |

| viii Contents |     |
|---------------|-----|
| Appendix      | 269 |
| References    | 273 |
| Index         | 291 |

# Figures

| 1.1  | Side view of the experimental setup used by Rutherford for alpha scattering                                                                                                                                                     | 2  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1.2  | Nuclear Charge Distribution and surface thickness <i>t</i> for some nuclei                                                                                                                                                      | 3  |
| 1.3  | Frederic and Irene Curie's experimental setup to discover the nature of 'Rutherford particles' – neutrons                                                                                                                       | 5  |
| 1.4  | Two input and three decay channels in Ghoshal's experiment                                                                                                                                                                      | 7  |
| 1.5  | Experimental excitation functions for the three decay channels                                                                                                                                                                  | 8  |
| 1.6  | Layout of IUAC heavy ion accelerator                                                                                                                                                                                            | 10 |
| 1.7  | Layout of BARC–TIFR heavy ion accelerator                                                                                                                                                                                       | 11 |
| 1.8  | A view of the external beam line of the cyclotron in VECC                                                                                                                                                                       | 12 |
| 1.9  | Gamma spectrum of the superdeformed band of <sup>152</sup> Dy                                                                                                                                                                   | 14 |
| 1.10 | Coulomb scattering of the incident ion                                                                                                                                                                                          | 15 |
| 1.11 | Trajectories of the incident ion for three different values of impact parameter                                                                                                                                                 | 16 |
| 1.12 | Typical Fresnel diffraction pattern                                                                                                                                                                                             | 17 |
| 1.13 | Trajectories of elastically scattered and Deep Inelastic Collision event                                                                                                                                                        | 19 |
| 1.14 | (a) Qualitative division of angular momentum space into regions where different interactions dominate                                                                                                                           | 20 |
| 1.14 | (b) Domains of Compound Nuclear (CN), Fusion Like (FL) events, Deep Inelastic Collisions (DIC), Quasi Elastic Scattering (QE), Elastic Scattering (EL) and Coulomb Excitation (CE), each marked by its maximum angular momentum | 20 |
| 1.15 | Pictorial representation of Heavy Ion Interactions                                                                                                                                                                              | 21 |
| 1.16 | Time evolution of a Deep Inelastic event                                                                                                                                                                                        | 22 |
| 1.17 | Time evolution of Fusion event                                                                                                                                                                                                  | 23 |
| 1.18 | Heavy ion potential as a function of separation <i>r</i> and angular momentum <i>l</i>                                                                                                                                          | 25 |
| 1.19 | Yrast line and regions of accessible and inassessable nuclear states                                                                                                                                                            | 26 |

#### **x** Figures

| 1.20 | Limiting value of Angular Momentum for beta stable nuclei against fission                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1.21 | (a) Effect of diffuseness on potential energy pocket; (b) Effect of the form of Coulomb<br>Potential on potential energy pocket                                                                                                                                                                                                                                                                                                                                                                                                      | 27 |
| 1.22 | Potential energy surface for <sup>220</sup> U as a function of two shape parameters, $r$ and $\sigma$ .<br>Whereas $r$ directly describe the distances between the centers of mass of the two interacting nuclei, $\sigma$ is a measure for the deformation of the two. The ground state of <sup>220</sup> U is normalized to zero energy; the numbers at the contours give the energies relative to it in MeV. The contact point of two spherical touching <sup>110</sup> Pd nuclei lies at $r \approx 1.6$ , $\sigma \approx 0.74$ | 27 |
| 1.23 | Contact point and saddle point for $^{110}Pd + ^{110}Pd = ^{220}U$ system in the <i>r</i> - $\sigma$ plane                                                                                                                                                                                                                                                                                                                                                                                                                           | 30 |
| 2.1  | Energy levels, level width and level spacing for compound nucleus                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43 |
| 2.2  | Compound nucleus decays by emitting ejectile b and residual nucleus B                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45 |
| 2.3  | Energy spectra of ejectile evaporated from the compound nucleus                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47 |
| 2.4  | Potential energy of the nucleus as a function of deformation                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50 |
| 2.5  | Single humped fission barrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51 |
| 2.6  | De-excitation sequence of the compound nucleus formed by the fusion of two heavy                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|      | ions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 53 |
| 2.7  | Typical ejectile energy spectra at a fixed angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55 |
| 2.8a | Angular distribution of ejectiles corresponding to CN emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55 |
| 2.8b | Angular distribution of ejectiles corresponding to PCN emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56 |
| 2.9  | Angular distribution of ejectiles corresponding to direct processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 56 |
| 2.10 | Initial configuration of the complex system when the projectile is a nucleon                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 57 |
| 2.11 | Two body interactions drive the initial state to state of higher exciton numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58 |
| 2.12 | Three different configurations for $n = 3 (2p + 1h)$ state                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58 |
| 2.13 | Transitions that feed and deplete the state with exciton no. $n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61 |
| 2.14 | Pictorial representation of HMB model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65 |
| 2.15 | Pictorial representation of intra nuclear cascade model                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68 |
| 2.16 | Schematic representation of MSD and MSC processes in the FKK model                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 69 |
| 2.17 | Geometry for the emission of PEPs, b is the impact parameter, Z is the beam axis, position of the window W is given by $c_1/c_2 = d_1/d_2$ , where $c_1$ and $c_2$ are the half density radii of the two nuclei. $d_1 + d_2$ is the distance between the centers of the two nuclei. The distance travelled by the PEP in nucleus Y is d. $R_1$ and $R_2$ are the sharp surface radii of the nuclei X and Y                                                                                                                           | 72 |
| 2.18 | Typical PEP and evaporation spectra for emitted neutrons (a) at backward CM-angle (b) at forward CM-angle for a heavy target and light projectile. At backward angles, the PEP contribution is totally masked by the evaporation spectrum                                                                                                                                                                                                                                                                                            | 75 |
| 2.19 | The projectile and target nuclei with the distances $C_1$ and $C_2$ where the charges density falls to half of the central value                                                                                                                                                                                                                                                                                                                                                                                                     | 77 |
| 2.20 | In the overlap region nuclear density saturates and <i>n</i> -nucleons from $X$ transfer to $Y$ while <i>m</i> -nucleons from $Y$ go to $X$                                                                                                                                                                                                                                                                                                                                                                                          | 79 |
| 3.1  | A typical stack arrangement for the measurement of excitation functions                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93 |

|      | Figures                                                                                                                                                                                                                              | xi  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3.2  | A schematic diagram of the Pelletron accelerator at the IUAC                                                                                                                                                                         | 94  |
| 3.3  | Inside view of the tank of the Pelletron accelerator                                                                                                                                                                                 | 95  |
| 3.4  | The rolling machine used for the preparation of thin samples at the target laboratory of the IUAC                                                                                                                                    | 101 |
| 3.5  | The high vacuum chamber used for making samples with the evaporation technique                                                                                                                                                       | 101 |
| 3.6  | Block diagram of the alpha spectrometer used for target thickness measurements                                                                                                                                                       | 102 |
| 3.7  | 5.486 MeV alpha peak of a <sup>241</sup> Am source (without absorber)                                                                                                                                                                | 103 |
| 3.8  | Shift in the position of the 5.486 MeV alpha peak of the <sup>241</sup> Am source after absorption in the sample                                                                                                                     | 103 |
| 3.9  | (a) The general purpose scattering chamber (GPSC); (b) typical arrangement of an in-<br>vacuum transfer facility (ITF), used for quick transfer of irradiated samples without<br>disturbing the vacuum inside the scattering chamber | 104 |
| 3.10 | The target ladder with a blank holder, target–aluminium catcher assembly and a quartz crystal for tuning the beam. In the inset, an artistic view of the stack is shown                                                              | 106 |
| 3.11 | Gamma-ray spectrum of a <sup>152</sup> Eu source recorded using the HPGe gamma-ray spectrometer. The gamma peak energies are indicated in keV                                                                                        | 108 |
| 3.12 | A typical geometry dependent efficiency curve as a function of $\gamma$ -ray energy at a source–detector separation of 1 cm. The solid line represents the best polynomial fit for the data points                                   | 109 |
| 3.13 | Gamma-ray spectrum of residues populated in the reaction $^{12}\mathrm{C}+^{175}\mathrm{Lu}$ at $\approx 78$ MeV beam energy                                                                                                         | 110 |
| 3.14 | Gamma-ray spectrum of residues populated in the reaction $^{13}\text{C}\text{+}^{169}\text{Tm}$ at $\approx 83~\text{MeV}$ beam energy                                                                                               | 111 |
| 3.15 | Gamma-ray spectrum of residues populated in the reaction $^{12}\mathrm{C}+^{159}\mathrm{Tb}$ at $\approx 87~\mathrm{MeV}$ beam energy                                                                                                | 111 |
| 3.16 | Gamma-ray spectrum of residues populated in the reaction $^{13}\mathrm{C}+^{159}\mathrm{Tb}$ at $\approx 88~\mathrm{MeV}$ beam energy                                                                                                | 112 |
| 3.17 | Decay curve of <sup>178</sup> Re residue populated via 4n channel in the interaction ( $^{13}C+^{169}Tm$ ) at $\approx 83$ MeV beam energy                                                                                           | 112 |
| 3.18 | Observed decay curve of <sup>168</sup> Lu residues populated via 4n channel in the <sup>13</sup> C+ <sup>159</sup> Tb reaction                                                                                                       | 113 |
| 3.19 | Schematic representation of the absorber stack used for trapping recoiling residues used in the measurement of forward recoil range distributions                                                                                    | 115 |
| 3.20 | Typical gamma-ray spectrum at one of the aluminium catcher foil in the interaction of the $^{12}\mathrm{C}+^{159}\mathrm{Tb}$ system at 87 MeV beam energy                                                                           | 117 |
| 3.21 | Schematic representation of the experimental setup used for the measurement of angular distribution of heavy residues                                                                                                                | 120 |
| 3.22 | Typical gamma-ray spectra of Al-catcher rings covering angular ranges $0-13^\circ,13-21^\circ$ and $21-30^\circ$                                                                                                                     | 121 |
| 3.23 | Gamma-ray spectra of Al-catcher rings covering angular ranges 30–39°, 39–45°, 45–60° and 60–64°                                                                                                                                      | 121 |

| xii Figure | es |
|------------|----|
|------------|----|

| 3.24 | Gamma-ray spectra of Al-catcher ring covering the angle range 0–13°. Inset shows 360.7 keV and 365.6 keV gamma rays corresponding to the residue <sup>181</sup> Re produced in the interaction of <sup>16</sup> O+ <sup>169</sup> Tm at 81 MeV beam energy                                                                                                                                                                                                                                                                                                                                                                                 | 122 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3.25 | Schematic representation of the GDA–CPDA setup at the IUAC, New Delhi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 124 |
| 3.26 | Side view of the gamma detector array at the IUAC, New Delhi, India                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 125 |
| 3.27 | The symmetric anti-Compton shield (ACS) as used in the GDA setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125 |
| 3.28 | The schematic representation of the charged particle detector array inside a small scattering chamber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 126 |
| 3.29 | Schematic diagram of the operation of a Phoswich detector for discrimination between protons and alpha particles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 127 |
| 4.1  | Experimentally measured and theoretically calculated excitation functions using code CASCADE: Effect of variation of level density free parameter ( <i>K</i> ) on calculated excitation functions with $F_{\theta}$ = 0.65 and $D_{AF}$ = 8                                                                                                                                                                                                                                                                                                                                                                                                | 141 |
| 4.2  | Experimentally measured and theoretically calculated excitation functions using code CASCADE: Effect of variation of parameter $F_{\theta}$ on calculated excitation functions with $K = 14$ and $D_{yr} = 8$                                                                                                                                                                                                                                                                                                                                                                                                                              | 142 |
| 4.3  | Experimentally measured and theoretically calculated excitation functions using code CASCADE: Effect of variation of parameter $D_{AF}$ on calculated excitation functions with $K = 14$ and $F_{\theta} = 0.55$                                                                                                                                                                                                                                                                                                                                                                                                                           | 143 |
| 4.4  | Experimentally measured and theoretically calculated excitation functions using code ALICE-91: Effect of variation of level density parameter ( <i>K</i> ) on calculated excitation functions with initial exciton number $n_0 = 12$ and mean free path multiplier COST = 2                                                                                                                                                                                                                                                                                                                                                                | 144 |
| 4.5  | The experimentally measured and theoretically calculated excitation functions using code ALICE-91: Effect of variation of parameter $n_0$ on calculated excitation function with $K = 18$ and mean free path multiplier COST = 2                                                                                                                                                                                                                                                                                                                                                                                                           | 145 |
| 4.6  | The experimentally measured and theoretically calculated excitation function using code ALICE-91: Effect of variation of parameter COST on calculated excitation function with $K = 18$ and initial exciton number $n_0=12$                                                                                                                                                                                                                                                                                                                                                                                                                | 145 |
| 4.7  | Experimentally measured and theoretically calculated excitation functions for reactions $^{165}$ Ho( $^{12}$ C, $\alpha 2n$ ) $^{171}$ Lu, and $^{165}$ Ho( $^{12}$ C, $\alpha 4n$ ) $^{169}$ Lu; the enhancement in the measured cross-sections as compared to the theoretical calculations is attributed to incomplete fusion process. The dashed lines represent theoretical calculations                                                                                                                                                                                                                                               | 148 |
| 4.8  | (a) Experimental EFs of <sup>168</sup> Lu <sup>g+m</sup> (3n), <sup>167</sup> Lu(4n), <sup>165</sup> Lu(6n) and <sup>167</sup> Yb(p3n) residues<br>populated in the <sup>12</sup> C+ <sup>159</sup> Tb system. The solid lines through the data points are drawn<br>to guide the eyes. (b) Sum of the experimentally measured EFs of all (xn + pxn)<br>channels ( $\Sigma \sigma_{CF}$ ) are compared with that predicted by PACE4 for different values of<br>the level density parameter ( <i>a</i> = <i>A</i> / <i>K</i> MeV <sup>-1</sup> ), where the effect of variation of the free<br>parameter <i>K</i> from 8 to 12 is also shown | 151 |
| 4.9  | Experimentally measured EFs of evaporation residues $^{165}\text{Tm}(\alpha 2n)$ , $^{163}\text{Tm}(\alpha 4n)$ , $^{161}\text{Ho}(2\alpha 2n)$ , and $^{160}\text{Ho}^{g+m}(2\alpha 3n)$ are compared with the PACE4 predictions. Solid black curves represent PACE4 predictions performed for $a = A/8$ MeV <sup>-1</sup> . In 4.9(a), the dash dotted and dotted lines through the data points are drawn to explain the trend of the excitation function                                                                                                                                                                                | 152 |
| 4.10 | Comparison of experimentally measured and theoretically predicted EFs of all $\alpha$ -emitting channels; physically justified level density parameter $a = A/8$ MeV <sup>-1</sup> is                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |

| xiii | Figures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 153  | used in PACE4 calculations. The value of $(\Sigma \sigma_{_{exp}} \alpha_{xn+2\alpha_{xn}})$ is significantly higher than that predicted by PACE4, which may be attributed to the contribution of ICF. Lines through the data points are drawn to guide the eyes                                                                                                                                                                                                                               |   |
| 155  | 4.11 Experimentally measured and theoretically calculated excitation functions for the reactions <sup>169</sup> Tm( <sup>12</sup> C,4n) <sup>177</sup> Re and <sup>169</sup> Tm( <sup>12</sup> C,5n) <sup>176</sup> Re                                                                                                                                                                                                                                                                         | 4 |
| 155  | 4.12 Experimentally measured and theoretically calculated excitation functions for ${}^{169}\text{Tm}({}^{12}\text{C},\alpha\beta n){}^{174}\text{Ta},{}^{169}\text{Tm}({}^{12}\text{C},\alpha4 n){}^{173}\text{Ta},{}^{169}\text{Tm}({}^{12}\text{C},2\alpha2 n){}^{172}\text{Lu},{}^{169}\text{Tm}({}^{12}\text{C},2\alpha3 n){}^{171}\text{Lu reactions}$                                                                                                                                   | 4 |
| 156  | 4.13 (a) Total fusion cross-section ( $\sigma_{\rm TF} = \Sigma \sigma_{\rm CF} + \Sigma \sigma_{\rm ICF}$ ) along with the sum of all CF channels ( $\Sigma \sigma_{\rm CF}$ ) and ICF channels ( $\Sigma \sigma_{\rm ICF}$ ) as a function of projectile energy and (b) the zoom of $\Sigma \sigma_{\rm CF}$ and $\sigma_{\rm TF}$ comparison on a linear scale for easy visualization of increasing ICF strength with projectile energy. Solid curves represent best fit to the data points | 4 |
| 157  | 4.14 Experimental EFs for xn (x = 4 and 5) and p4n-channels populated in the ${}^{12}C+{}^{175}Lu$ system                                                                                                                                                                                                                                                                                                                                                                                      | 4 |
| 158  | 4.15 Sum of experimentally measured EFs of all xn and pxn-channels ( $\Sigma \sigma_{xn+pxn}^{exp}$ ) along with the values predicted by the PACE4 code at $K = 10$                                                                                                                                                                                                                                                                                                                            | 4 |
| 159  | 4.16 Experimentally measured EFs of the $\alpha 2n$ , $\alpha 4n$ and $2\alpha 3n$ channels populated in ${}^{12}C+{}^{175}Lu$ system; the PACE4 predictions at $K = 10$ are shown by solid curves                                                                                                                                                                                                                                                                                             | 4 |
| 161  | 4.17 Comparison of the $(\Sigma \sigma_{\alpha xn+2\alpha xn}^{exp})$ in the <sup>12</sup> C+ <sup>175</sup> Lu system with corresponding PACE4 prediction at $K = 10$                                                                                                                                                                                                                                                                                                                         | 4 |
| 162  | 4.18 Deduced values of $\sigma_{_{ m ICF}}$ plotted as a function of projectile energy                                                                                                                                                                                                                                                                                                                                                                                                         | 4 |
| 162  | 4.19 A histogram of deduced $\%F_{ICF}$ values as a function of normalized laboratory energy                                                                                                                                                                                                                                                                                                                                                                                                   | 4 |
| 164  | 4.20 Ratio of the individual channel cross-section $\sigma_{xn}$ to the total channel cross-section $\Sigma \sigma_{xn}$ as a function of laboratory energy for 4n channel along with PACE4 predictions (for $K = 8$ to 12); (b) measured EFs for all xn (x = 3, 5 and 6) channels along with PACE4 calculations                                                                                                                                                                               | 4 |
| 165  | 4.21 Experimentally measured and theoretically calculated excitation functions for <sup>177</sup> W residue populated via p4n channel                                                                                                                                                                                                                                                                                                                                                          | 4 |
| 165  | 4.22 An example of the residue <sup>177</sup> W being populated via two different routes                                                                                                                                                                                                                                                                                                                                                                                                       | 4 |
| 166  | 4.23 Experimentally measured EF for the residues <sup>177</sup> W(p4n channel) compared with PACE4 predictions: (a) cumulative cross-section; (b) independent cross-section. (c) Experimentally measured and theoretically predicted EFs of all xn and pxn channels. The solid lines are the PACE4 predictions with $K = 10$ . In Figure 4.23(d), $V_{\rm b}$ (= 54.6 MeV) is the Coulomb barrier in laboratory frame                                                                          | 4 |
| 167  | 4.24 (a)–(d) Experimentally measured EFs for the residues <sup>175</sup> Ta, <sup>174</sup> Ta, <sup>173</sup> Ta, <sup>172</sup> Lu and <sup>171</sup> Lu compared with the PACE4 predictions respectively. Solid curves represent theoretical calculations. In panel (d), the dotted lines through the data points are drawn to show the trend of the excitation functions                                                                                                                   | 4 |
| 168  | 4.25 (a) Sums of all experimentally measured cross-sections for $\alpha$ and $2\alpha$ emitting channels are compared with corresponding PACE4 predictions. The values $\Sigma \sigma_{exp}^{\alpha's}$ are significantly higher than that predicted by PACE4. (b) Deduced $\sigma_{ICF}$ is plotted as a function of beam energy. The dashed line through the data points in Figure 4.25(b) is drawn just to guide the eyes                                                                   | 4 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |

#### **xiv** Figures

- 4.26 Excitation functions for reactions <sup>128</sup>Te(<sup>14</sup>N, 4n)<sup>138m</sup>Pr, <sup>128</sup>Te(<sup>14</sup>N, 5n)<sup>137</sup>Pr and <sup>128</sup>Te(<sup>14</sup>N, p4n)<sup>137g</sup>Ce. The symbols with dark circles represent the experimental data. Various curves correspond to the theoretical predictions of the ALICE-91 code 170
- 4.27 Excitation functions for the reactions <sup>128</sup>Te(<sup>14</sup>N, 4n)<sup>138m</sup>Pr, <sup>128</sup>Te(<sup>14</sup>N,  $\alpha$ 5n)<sup>133</sup>La, <sup>128</sup>Te(<sup>14</sup>N,  $\alpha$ 6n)<sup>132g</sup>La, <sup>128</sup>Te(<sup>14</sup>N,  $\alpha$ 2pn)<sup>135m</sup>Cs, <sup>128</sup>Te(<sup>14</sup>N, 2 $\alpha$ 2pn)<sup>131</sup>I and <sup>128</sup>Te(<sup>14</sup>N, 3 $\alpha$ )<sup>130g</sup>I. The filled circles represent the experimental data. The solid and dotted lines correspond to the theoretical predictions of the ALICE-91 code
- 4.28 Excitation functions for the reactions <sup>128</sup>Te(<sup>14</sup>N, 4n)<sup>138m</sup>Pr, <sup>128</sup>Te(<sup>14</sup>N, 5n)<sup>137</sup>Pr, <sup>128</sup>Te(<sup>14</sup>N, p4n)<sup>137g</sup>Ce, <sup>128</sup>Te(<sup>14</sup>N,  $\alpha$ 5n)<sup>133</sup>La, <sup>128</sup>Te(<sup>14</sup>N,  $\alpha$ 6n)<sup>132g</sup>La and <sup>128</sup>Te(<sup>14</sup>N,  $\alpha$ 2pn)<sup>135m</sup>Cs. The filled dark circles represent the experimental data. Various curves correspond to the theoretical predictions of the PACE code 174
- 4.29 Experimentally measured and theoretically calculated excitation functions for the  ${}^{27}\text{Al}({}^{16}\text{O},2\alpha\text{n})$  reaction. Literature values are also shown in the figure 177
- 4.30 Experimentally measured excitation functions for the reactions (a)  ${}^{27}\text{Al}({}^{16}\text{O}, 3\alpha3p){}^{28}\text{Mg}$ , (b)  ${}^{27}\text{Al}({}^{16}\text{O}, 3\alpha3pn){}^{27}\text{Mg}$ , (c)  ${}^{27}\text{Al}({}^{16}\text{O}, 4\alpha2pn){}^{24}\text{Na}$  and (d)  ${}^{27}\text{Al}({}^{16}\text{O}, 4\alpha3p){}^{24}\text{Ne}$  178
- 4.31 Experimentally measured and theoretically calculated EFs using code PACE2. The effect of variation of parameter K is also shown in these figures. In Figure 4.31(d), the open circles represent the cumulative yield for the production of the residue <sup>171</sup>Hf, while the solid circles represent its independent yield
- 4.32 Experimentally measured and theoretically calculated EFs using code PACE. The effect of variation of parameter K is also shown in these figures. In Figure 4.32(a), the open circles represent the cumulative yield for the production of the residue <sup>170</sup>Hf, while the solid circles represent its independent yield
- 4.33 Experimentally measured and theoretically calculated EFs using codes ALICE-91, CASCADE and PACE2. In Figure 4.33(c), the open circles represent the cumulative yield for the production of the residue <sup>182</sup>Os, while dark circles represent its independent yield
- 4.34 Experimentally measured and theoretically calculated EFs for alpha-emitting channels. Theoretical calculations have been done using codes ALICE-91, CASCADE and PACE2. In Figure 4.34(c) and (d), calculated EFs are not shown
- 4.35 Measured EFs for (a) xn (x = 3, 4 and 5) channels and (b) pxn (x = 3, 4 and 5) channels. In panels (a) and (b), the lines joining the experimental data points are just to guide the eyes. Panel (c) shows the sum of cross-sections for the xn and pxn channels. The effect of the variation of the choice of the level density parameter K = 8, 9 and 10 (dotted, dashed and solid lines, respectively) on calculated  $\Sigma \sigma_{CF}$  is also shown
- 4.36 (a) Measured EFs for  $\alpha xn$  (x = 1, 2 and 3) channels, (b) sum of the  $\alpha xn$  channels, measured as well as calculated using PACE4 for K = 8, 9, 10 (dotted, dashed and solid lines, respectively), and (c) sum of  $\sigma_{ICF}$  (all  $\alpha xn$ ) channels. In panels (a), (b) and (c), the spline-like lines joining the experimental data points are just to guide the eyes. The inset shows cross-sections for the sum of both CF and ICF channels and for CF channels separately. The increasing difference between the two curves in the inset, with energy indicates the dominance of ICF processes with energy
- 4.37 Experimental EFs of <sup>174</sup>Ta (3n), <sup>173</sup>Ta (4n), <sup>172</sup>Ta (5n) and <sup>171</sup>Ta (6n) have been compared with that predicted by PACE4 for different values of level density parameter (a = A/K MeV<sup>-1</sup>, where *K* is varied from 8 to 12)

190

173

180

181

183

184

187

|      | Figures                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XV  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.38 | Experimental EFs of <sup>171</sup> Lu ( $\alpha$ 2n), <sup>168</sup> Lu( $\alpha$ 5n), <sup>167</sup> Lu( $\alpha$ 6n) and <sup>167</sup> Yb( $\alpha$ p5n) residues have been compared with that predicted by PACE4 for different values of level density parameter ( $a = A/K$ MeV), where K is varied from 8 to 12                                                                                                                                              | 194 |
| 4.39 | (a) Incomplete fusion cross-section along with total and complete fusion cross-<br>section. (b) Comparison of $F_{\rm ICF}$ for <sup>18, 16</sup> O projectiles on the same target                                                                                                                                                                                                                                                                                 | 195 |
| 4.40 | Experimentally measured excitation functions for all xn/pxn channels populated in the $^{19}\mathrm{F}$ + $^{159}\mathrm{Tb}$ system. The solid lines through the experimental data represent the PACE4 calculations                                                                                                                                                                                                                                               | 197 |
| 4.41 | (a) Sum of experimentally measured excitation functions of all $\alpha$ -emitting channels compared with the predictions of the statistical model code PACE4. The line through the data points is drawn to guide the eyes. (b) Comparison of $\sigma_{\rm TF}$ , $\sigma_{\rm CF}$ and $\sigma_{\rm ICF}$ cross-sections for the <sup>19</sup> F + <sup>159</sup> Tb system with the incident laboratory energy                                                    | 197 |
| 4.42 | (a) Experimentally measured EFs of <sup>185</sup> Pt, <sup>184</sup> Pt, <sup>183</sup> Pt and <sup>183</sup> Ir residues populated via 3n, 4n, 5n and p4n in the <sup>19</sup> F+ <sup>169</sup> Tm system. The solid lines are the PACE4 calculations done for the level density parameter $a = A/10$ MeV <sup>-1</sup> . The x error bars on the energy axis indicate the uncertainty in energy due to energy loss of the incident beam in the sample thickness | 198 |
| 4.43 | An example showing the two different routes for the population of the residues $^{\rm 184}{\rm Ir}$                                                                                                                                                                                                                                                                                                                                                                | 200 |
| 4.44 | Experimentally measured EF of $^{184}\mathrm{Ir}(p3n)$ channel compared with PACE4 calculations. (a) Cumulative cross-section; (b) independent cross-section. The solid line is the PACE4 calculations at $K=10$                                                                                                                                                                                                                                                   | 201 |
| 4.45 | Experimentally measured EFs of <sup>183,182,181,179</sup> Os (axn, where x = 1, 2, 3 and 5) residues<br>populated in the <sup>19</sup> F+ <sup>169</sup> Tm system and compared with those calculated by the PACE4<br>model. Solid lines are the PACE4 calculations done for the level density parameter $a = A/10$ MeV <sup>-1</sup>                                                                                                                              | 202 |
| 4.46 | Experimentally measured EFs of <sup>177,175,174</sup> W (2 $\alpha$ xn, where x = 3, 5 and 6) and <sup>176,175</sup> Ta(2 $\alpha$ pxn, where x = 3 and 4) residues populated in the <sup>19</sup> F+ <sup>169</sup> Tm system. The solid line is the PACE4 calculations for the level density parameter <i>a</i> = <i>A</i> /10 MeV <sup>-1</sup>                                                                                                                 | 203 |
| 4.47 | Measured recoil range distributions (RRDs) for <sup>167</sup> Lu residues populated via the 4n channel respectively (a) at 74.48 MeV, (b) at 80.46 MeV and (c) at 86.54 MeV beam energies                                                                                                                                                                                                                                                                          | 206 |
| 4.48 | Typical RRDs for <sup>165</sup> Tm populated via the $\alpha$ 4n channel at $\approx$ 74, 80 and 87 MeV beam energies. Two distinct peaks in the RRD distributions corresponding to two momentum transfer components may be seen in the figure                                                                                                                                                                                                                     | 208 |
| 4.49 | Measured FRRDs for <sup>161</sup> Ho residues populated via the $2\alpha 2n$ channel at $\approx 74$ , 80 and 87 MeV beam energies, having three different momentum transfer components                                                                                                                                                                                                                                                                            | 209 |
| 4.50 | Experimentally measured recoil range distributions for various radioactive residues produced in the interaction of <sup>16</sup> O beam with <sup>159</sup> Tb target at $\approx$ 90 MeV                                                                                                                                                                                                                                                                          | 214 |
| 4.51 | The experimental recoil range distributions fitted with Gaussian peaks to disentangle the relative contributions of CF and ICF processes                                                                                                                                                                                                                                                                                                                           | 215 |
| 4.52 | Experimentally measured recoil range distributions for various radioactive residues produced in the interaction of <sup>16</sup> O beam with <sup>169</sup> Tm target at $\approx 87$ MeV                                                                                                                                                                                                                                                                          | 218 |

Cambridge University Press & Assessment 978-1-108-49911-8 — Fundamentals and Applications of Heavy Ion Collisions Below 10 MeV/ Nucleon Energies R. Prasad , B. P. Singh Frontmatter <u>More Information</u>

#### **xvi** Figures

| 4.53 | Measured recoil range distributions fitted with Gaussian peaks to determine the relative contributions of complete and incomplete fusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 219 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.54 | (a) Experimentally measured recoil range distributions for $^{192}Hg(p4n)$ at projectile energies of $\approx$ 81, 90 and 96 MeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 220 |
| 4.54 | (b) Experimentally measured recoil range distributions for $^{191}Au^g(\alpha 2n)$ at projectile energies $\approx 81,90$ and 96 MeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 221 |
| 4.54 | (c) Experimentally measured recoil range distributions for $^{186}Ir^g(2\alpha 3n)$ at projectile energies $\approx$ 81, 90 and 96 MeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 221 |
| 4.55 | Experimentally measured angular distributions of the various reaction residues populated via CF and/or ICF mechanisms in the <sup>16</sup> O+ <sup>169</sup> Tm system at an energy of $\approx 81$ MeV. Solid lines are drawn to guide the eyes. Different reaction products have been labeled by their corresponding emission channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 226 |
| 4.56 | Typical arrangement of the target–catcher assembly used for the angular distribution measurements covering the annular range from $(0-13^\circ)$ to $(60-64^\circ)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 227 |
| 4.57 | Typical $\gamma-spectra of Al-catcher rings covering the angular zones from (0–13°) to (45–60°)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 228 |
| 4.58 | Measured angular distribution of residues in the reaction ${}^{27}\text{Al}({}^{16}\text{O},2lpha\text{n}){}^{34}\text{Cl}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 229 |
| 4.59 | Experimentally measured spin distributions for different residues populated via xn (CF product) and $\alpha$ xn/2 $\alpha$ xn (both the CF and/or the ICF products) in the <sup>16</sup> O+ <sup>169</sup> Tm system at $\approx 5.6$ MeV/nucleon energy. The nomenclature used in the plots indicates the expected reaction dynamics involved – ICF- $\alpha$ and ICF-2 $\alpha$ means that the involved reaction dynamics is ICF respectively with one $\alpha$ and 2 $\alpha$ multiplicity; CF- $\alpha$ indicates complete fusion (CF) with one $\alpha$ multiplicity identified from the backward $\alpha$ -gated spectra. The nomenclature also shows that the exit channels are composed of the specific residual nucleus, $\alpha$ particle(s) ( $M_{\alpha} = 1-2$ ), neutron(s) and/or proton(s). F and B represent the reaction products identified respectively from forward and backward $\alpha$ -gated spectra. The lines and curves through data points are the reaction bet fit procedure. | 222 |
| 4.60 | Ratio of experimentally measured and theoretically estimated relative production yields of residues populated only via CF in the ${}^{16}O{+}{}^{169}Tm$ system at $\approx 5.6$ MeV/ nucleon energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 232 |
| 4.61 | Deduced feeding intensities of gamma cascades of different ERs expected to be produced via xn, $\alpha$ xn and/or $2\alpha$ xn channels in the <sup>16</sup> O+ <sup>169</sup> Tm system at $\approx 5.6$ MeV/ nucleon. The lines and curves through data points are drawn only to guide the eye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 234 |
| 4.62 | Fusion–evaporation (CF) $\alpha$ -energy profile for forward (F) zone (10–60°) at projectile energy $E = 5.6A$ MeV in the ${}^{12}C{}+{}^{169}Tm$ system predicated by PACE4. Different angular slices from 10° to 60° are also shown in the figure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 236 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |

4.63 Experimentally measured spin distributions for (a) CF-5n channel (identified from singles spectra) and (b) CF-p4n channel (identified from backward proton-gated spectra) are plotted along with the spin distributions of the same channels from Singh et al.<sup>37</sup> Reaction products are labeled by self-explanatory notations and emission cascades. The nomenclature shows that the exit channels are composed by the one given residual nucleus, neutron(s), and/or proton(s). Lines through the data points are the result of the best-fit

© in this web service Cambridge University Press & Assessment

Cambridge University Press & Assessment 978-1-108-49911-8 — Fundamentals and Applications of Heavy Ion Collisions Below 10 MeV/ Nucleon Energies R. Prasad , B. P. Singh Frontmatter <u>More Information</u>

| 4.64 | Experimentally measured spin distributions for (a) CF- $\alpha$ 4n channel and (b) ICF- $\alpha$ 4n channel along with the spin distributions of the same channels from Singh et al. <sup>37</sup> B and F represent the reaction products identified from backward (B) $\alpha$ -gated spectra and from forward (F) $\alpha$ -gated spectra, respectively. Lines and curves are the result of the best-fit procedure | 238 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.65 | Experimentally measured spin distributions for (a) CF- $\alpha$ 3n channel, and (b) ICF- $\alpha$ 3n channel along with the spin distributions of the same channels from Singh et al. <sup>37</sup>                                                                                                                                                                                                                   | 238 |
| 4.66 | Experimentally measured spin distribution for ICF-2 $\alpha$ 2n channel identified from the forward $\alpha$ -gated spectra. ICF-2 $\alpha$ 2n means the involved reaction dynamics is ICF with a multiplicity of $\alpha$ = 2                                                                                                                                                                                        | 239 |
| 4.67 | Deduced feeding intensities of $\gamma$ cascades of different reaction products expected to<br>be populated via (a) CF-5n, CF-p4n and (b) CF- $\alpha$ 3n (identified from backward<br>$\alpha$ -gated spectra) and CF- $\alpha$ 3n (identified from forward $\alpha$ -gated spectra) channels.<br>Lines and curves are drawn only to guide the eyes                                                                  | 240 |
| 4.68 | Deduced feeding intensities of $\gamma$ cascades of different reaction products expected<br>to be populated via (a) CF- $\alpha$ 4n (identified from backward $\alpha$ -gated spectra), ICF- $\alpha$ 4n (identified from backward $\alpha$ -gated spectra) and (b) ICF- $2\alpha$ 2n (identified from<br>forward $\alpha$ -gated spectra) channels. Lines and curves are drawn only to guide the eyes                | 241 |
| 4.69 | Schematic diagram of an experimental setup for the measurement of PEQ components in the system $\rm ^{16}O+\rm ^{169}Tm$                                                                                                                                                                                                                                                                                              | 243 |
| 4.70 | Experimentally measured (a) normalised yield profiles and (b) yield ratios for levels with different spins $(J_{obs})$ in <sup>181</sup> Os residue populated via p3n channel. Data points are joined with straight lines only to guide the eye. The horizontal dotted line at ratio =1.2 in Figure 4.70(b) indicates the maximum limit of forward–backward asymmetry expected from linear momentum effects           | 244 |
| 4.71 | Experimentally measured yield ratios for different residues populated via 2p, 2pn, 2p2n, 3p, 3pn, 3p3n, 4pn and 4p2n channels                                                                                                                                                                                                                                                                                         | 245 |
| 4.72 | Experimentally measured recoil range distribution (RRDs) curves for different reactions. The reaction and the energy of the incident $^{16}{\rm O}$ ion are listed in each panel                                                                                                                                                                                                                                      | 246 |
| 4.73 | Measured excitation functions (EFs) for reactions specified in each panel                                                                                                                                                                                                                                                                                                                                             | 248 |
| 5.1  | The incomplete fusion fraction deduced from the analysis of excitation functions, forward recoil range distribution (FRRDs) and angular distributions (ADs) data, as a function of normalised beam energy. The line drawn through the data points is just to guide the eves                                                                                                                                           | 251 |
| 5.2  | Comparison of experimental incomplete fusion strength functions for different projectiles on the same target. The normalised energy is plotted on the <i>x</i> -axis, to wash out the Coulomb effect                                                                                                                                                                                                                  | 252 |
| 5.3  | Comparison of $F_{\rm ICF}$ values for the two systems ( <sup>12</sup> C+ <sup>159</sup> Tb) and ( <sup>13</sup> C+ <sup>159</sup> Tb)                                                                                                                                                                                                                                                                                | 253 |
| 5.4  | Comparison of $F_{ICF}$ values for various systems as a function of the mass asymmetry parameter of interacting partners at a constant normalised energy. The lines are drawn to get the linear fit to the data separately for each projectile                                                                                                                                                                        | 255 |
| 5.5  | A comparison of incomplete fusion fraction $F_{\rm ICF}$ in terms of the $\alpha$ Q value of the projectile at a constant $E_{\rm norm}$ value for different projectiles on the same target, <sup>159</sup> Tb                                                                                                                                                                                                        | 256 |

www.cambridge.org

Figures

xvii

#### xviii Figures

| 5.6   | Incomplete fusion strength function $F_{\rm ICF}(\%)$ for different projectiles on targets, <sup>181</sup> Ta and <sup>169</sup> Tm, as a function of the $\alpha$ Q value of the projectile at a fixed value of the normalised energy ( $E_{\rm Norm}$ )     | 256 |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.7   | The ICF strength function $F_{ICF}$ of various systems as a function of $Z_{P'}Z_{T'}$ . The dashed line is drawn to guide the eye, indicating a linear fitting                                                                                               | 257 |
| 5.8   | The fusion $\ell$ distribution calculated using the code CCFULL to get the population of $\ell$ bins at different values of energies                                                                                                                          | 258 |
| 5.9   | Experimentally obtained mean values for angular momentum as a function of the complete and incomplete fusion modes for the system $^{16}O+^{169}Tm$ at 5.6 MeV/A                                                                                              | 259 |
| 5.10  | (a) Energy dependence of the percent pre-equilibrium emission for reaction ${}^{181}\text{Ta}({}^{16}\text{O},2n)$ (b)Percent pre-equilibrium component for the emission of (pn), (2n) and (3n) from the system ${}^{152}\text{Th} {}^{16}\text{O}$ at 90 MeV | 262 |
| 5 1 1 | Experimentally measured on in distributions for the reaction $^{169}\text{Tm}$ ( $^{16}\text{O}$ 2n) $^{183}\text{Im}$                                                                                                                                        | 262 |
| ).11  | Experimentally measured spin distributions for the feaction 1 m ( O, 2n) m                                                                                                                                                                                    | 202 |
| 5.12  | Schematic diagram of the event sequence for the production of SHE nucleus via                                                                                                                                                                                 |     |
|       | complete fusion                                                                                                                                                                                                                                               | 266 |

# Tables

| 3.1 | List of reactions and relevant parameters for the study of excitation functions                                                                                       | 96  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3.2 | A list of energies and intensities of some of the prominent $\gamma\text{-}rays$ from standard radioactive $^{152}\text{Eu}$ source                                   | 107 |
| 3.3 | List of catcher foil thicknesses used in RRD experiments for the system $^{16}\mathrm{O}+^{181}\mathrm{Ta}$ at different incident energies                            | 116 |
| 3.4 | List of reactions and other relevant parameters used for the recoil range distributions studies                                                                       | 118 |
| 3.5 | Important parameters of a charged particle detector array                                                                                                             | 127 |
| 3.6 | List of reactions studied for spin distribution measurements at different energies                                                                                    | 129 |
| 4.1 | List of systems for which excitation functions have been measured; the energy range<br>and the Coulomb barrier energy of the systems are also listed                  | 132 |
| 4.2 | Decay data of residues identified in the reactions                                                                                                                    | 133 |
| 4.3 | Experimentally measured production cross-sections for residues populated via CF and/or ICF processes in various systems                                               | 139 |
| 4.4 | Measured values of cross-sections for various residues populated via different reaction channels in the system $^{12}\rm C+^{165}Ho$                                  | 147 |
| 4.5 | Experimental values of reaction cross-sections for various residues populated in the system $^{12}\mathrm{C}+^{159}\mathrm{Tb}$ at different energies                 | 149 |
| 4.6 | Measured values of cross-sections for residues populated at different energies in the system $^{12}\mathrm{C}+^{169}\mathrm{Tm}$                                      | 154 |
| 4.7 | Measured cross-section values at different energies for the various residues identified in the system $^{12}\rm{C+}^{175}\rm{Lu}$                                     | 156 |
| 4.8 | Experimentally measured production cross-sections at different energies for the residues populated via CF/ICF processes in system $^{13}\mathrm{C}+^{169}\mathrm{Tm}$ | 163 |
|     |                                                                                                                                                                       |     |

#### **xx** Tables

| Experimentally measured cross-sections at different energies for the reaction residues identified in the system $^{14}\rm N+^{128}Te$                                                                                                                                                                                                                                    | 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Measured values of cross-sections at different energies for residues populated via different channels and identified in system $^{16}\mathrm{O}+^{27}\mathrm{Al}$                                                                                                                                                                                                        | 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Measured cross-sections at different energies for residues identified in the system ${\rm ^{16}O+^{159}Tb}$                                                                                                                                                                                                                                                              | 179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Measured cross-sections at different energies for the residues identified in the system $^{16}\mathrm{O+}^{169}\mathrm{Tm}$                                                                                                                                                                                                                                              | 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Experimentally measured cross-sections at different energies for the population of different identified residues in the system $^{16}\mathrm{O}+^{103}\mathrm{Rh}$                                                                                                                                                                                                       | 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Experimentally measured cross-sections for the reaction residues populated in the system $^{16}\mathrm{O}\text{+}^{181}\mathrm{Ta}$                                                                                                                                                                                                                                      | 186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Measured cross-sections at different energies for the residues identified in the system $^{18}\mathrm{O+^{159}Tb}$                                                                                                                                                                                                                                                       | 192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cross-sections at different energies for the residues identified in the system <sup>19</sup> F+ <sup>159</sup> Tb                                                                                                                                                                                                                                                        | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Measured cross-sections at different energies for the residues identified in the system ${}^{19}\mathrm{F}{+}^{169}\mathrm{Tm}$                                                                                                                                                                                                                                          | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| List of systems for which the recoil range distributions have been measured along<br>with the values of incident energies at which measurements have been done and the<br>Coulomb barrier for the system                                                                                                                                                                 | 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Experimentally measured most probable ranges $R_{\rho(exp)}$ deduced from RRD data, and theoretically calculated mean ranges $R_{\rho(the)}$ in aluminium in units of $\mu g/cm^2$ for CF and ICF components using the range energy relation along with the reaction products produced in the interaction of <sup>12</sup> C with <sup>159</sup> Tb at $\approx$ 74 MeV. | 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Comparison of normalised FWHM for various RRD distributions                                                                                                                                                                                                                                                                                                              | 209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Experimentally measured recoil range integrated cross-section $\sigma_{exp}^{\text{RRD}}$ (mb) deduced from RRD curves, and theoretically calculated cross-section $\sigma_{dec}^{\text{PACE}}$ at $\approx$ 74, 80 and 87                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MeV                                                                                                                                                                                                                                                                                                                                                                      | 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A list giving thicknesses of catcher foils used in KRD measurements                                                                                                                                                                                                                                                                                                      | 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Experimentally measured recoil ranges $R_{p(exp)}$ deduced from RRD data, and the theoretically calculated most probable mean ranges $R_{p(the)}$ for CF components at $\approx 81$ , 90 and 96 MeV, obtained using the range energy relation for the residues produced in the interaction of <sup>16</sup> O with <sup>181</sup> Ta                                     | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Experimental ranges $R_{p(exp)}$ , deduced from RRD data and theoretically calculated ranges $R_{p(the)}$ , for various incomplete fusion components at $\approx 81$ , 90 and 96 MeV incident energy                                                                                                                                                                     | 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| List of systems for which angular distributions of fusion residues have been measured.<br>The energy of the incident ion and the Coulomb barrier for the system are also listed                                                                                                                                                                                          | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| List of systems for which spin distributions have been measured along with the energy of the incident ion and the Coulomb barrier for each system                                                                                                                                                                                                                        | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Relative strengths of PE and CN components deduced from the analysis of RRD data for different reactions at different incident energies                                                                                                                                                                                                                                  | 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                          | Experimentally measured cross-sections at different energies for the reaction residues identified in the system <sup>14</sup> N+ <sup>32</sup> Te<br>Measured values of cross-sections at different energies for residues populated via different channels and identified in system <sup>16</sup> O+ <sup>27</sup> Al<br>Measured cross-sections at different energies for the residues identified in the system <sup>16</sup> O+ <sup>169</sup> Tb<br>Measured cross-sections at different energies for the residues identified in the system <sup>16</sup> O+ <sup>169</sup> Tb<br>Measured cross-sections at different energies for the residues populated in the system <sup>16</sup> O+ <sup>169</sup> Tm<br>Experimentally measured cross-sections for the reaction residues populated in the system <sup>16</sup> O+ <sup>181</sup> Ta<br>Measured cross-sections at different energies for the residues identified in the system <sup>16</sup> O+ <sup>181</sup> Ta<br>Measured cross-sections at different energies for the residues identified in the system <sup>19</sup> C+ <sup>197</sup> Tb<br>Cross-sections at different energies for the residues identified in the system <sup>19</sup> F+ <sup>159</sup> Tb<br>Measured cross-sections at different energies for the residues identified in the system <sup>19</sup> F+ <sup>169</sup> Tm<br>List of systems for which the recoil range distributions have been measured along with the values of incident energies at which measurements have been done and the Coulomb barrier for the system<br>Experimentally measured most probable ranges $R_{plexp}$ deduced from RRD data, and theoretically calculated mean ranges $R_{plexp}$ in aluminium in units of $\mug/cm^2$ for CF and ICF components using the range energy relation along with the reaction products produced in the interaction of <sup>12</sup> C with <sup>159</sup> Tb at $\approx 74$ MeV.<br>Comparison of normalised FWHM for various RRD distributions<br>Experimentally measured recoil range integrated cross-section $\sigma_{dem}^{Pac}$ at $\approx 74, 80$ and 87 MeV<br>A list giving thicknesses of catcher foils used in RRD measurements<br>Experimentally measured recoil range R <sub>plexpl</sub> deduced from RRD data, and the theoretically calculated most probable mean ranges $R_{plexp}$ for CF components at $\approx 81, 90$ and 96 MeV, obtained using the range energy relati |

## Preface

The study of incomplete fusion (ICF) reactions in heavy ion (HI) interactions at energies below 10 MeV per nucleon is a topic of resurgent interest. At such low energies, near and/or just above the fusion barrier, the complete fusion (CF) of the interacting ions is expected to be the most dominant process; however, experiments carried out during the last decade or so have indicated that a significant part of the interaction proceeds through ICF process. Some theories have been proposed to explain the process of incomplete fusion but none of them could successfully reproduce the experimental data at energies < 10 MeV/A. In order to understand the dynamics of such low energy ICF processes and to develop a viable theoretical frame work, our group carried out extensive and complementary experiments on the topic during the last decade or so. The monograph presents the details of these experiments and the analysis of the data.

The presentation has five chapters; Chapter-1 gives a historical background of the subject and discusses the motivation for the work. Chapter-2, entitled 'Theoretical Tools, Reaction Mechanism and Computer Codes' is intended to develop a sound theoretical background of the subject. Important features of computer codes available in the market for theoretical simulation are discussed in this chapter. All experimental details, including the methodology, experimental setups, formulations used for data reduction etc., are given in Chapter-3. The Chapter-4, entitled 'Measurements' contains the details of the measurements of Excitation Functions (EFs), Recoil Range Distributions (RRDs), Angular Distributions (ADs), Spin Distributions (SDs) and Feeding Intensity Profiles (FIPs) of reaction residues. Each measurement is discussed in detail and the recorded experimental data is presented both in tabular form as well as in graphical form. Chapter-5, is 'Results and Conclusions' which provides a detailed discussion of the results obtained from the critical analysis and evaluation of the data obtained in the present set of experiments. Conclusions regarding the dependence of ICF component on various entrance channel parameters, presented in this chapter may be of considerable value in developing a theoretical frame work for HI reactions at energies below 10 MeV per nucleon. The experiments detailed in this document were carried out by our research group at the Physics Department, Aligarh Muslim University, Aligarh, India,

#### xxii Preface

in collaboration with members of the Nuclear Physics Group of the Inter University Accelerator Centre (IUAC), New Delhi, India. The Appendix provides a list of some of the important research publications on the subject published by our research group.

During our interaction with fresh graduates desirous of having a career in accelerator based physics in general and experimental nuclear physics in particular, it was realized that they need a document that may spell out most details for carrying out experiments using accelerated beams. These details, such as, designing an experiment, preparation of samples for irradiation, their thickness measurement, choice of detectors, calibration of detectors, data acquisition and analysis etc., are generally available only in research publications and that too in brief. The present document is written with the view to provide young entrants a detailed description for carrying out experiments with accelerated beams. Details of four different types of experiments mentioned above are provided in this document. As such, the monograph is expected to serve as a handbook, a ready reference for beginners in the field. It is hoped that the monograph will be of interest both to new entrants as well as to experienced researchers in the field of low energy heavy ion interactions.

## Acknowledgements

The research work reported in this book is based on the experiments carried out by our research group at the Physics Department, Aligarh Muslim University, Aligarh, India in collaboration with members of the Nuclear Physics Group, Inter University Accelerator Centre (IUAC), New Delhi, India. We wish to put on record our sincere thanks to our collaborators from IUAC, Dr Ranjan K. Bhowmik, Dr R. P. Singh, Dr S. Muralithar, Dr Rakesh Kumar, Mrs K. S. Golda, Mrs Indu Bala and Dr Ajit K. Sinha (presently, the Director General, Inter University Centre for Department of Atomic Energy Facilities, Indore, India). We appreciate, very much, the cooperation extended by you all, individually and collectively. Thank you very much.

Thanks are due to the members of our research group as well; in particular to Dr H. D. Bhardwaj, Dr (Mrs) Sunita Gupta, Dr M. M. Musthafa, Dr (Mrs) Unnati, Dr Manoj Kumar Sharma, Dr Pushpendra P. Singh, Dr Devendra P. Singh, Dr Abhishek Yadav, Dr Vijay Raj Sharma and Mr Mohd. Shuaib. Each member of the group participated, designed, and successfully carried out some part of the experimental work. We thank them all from the bottom of our hearts.

All experiments reported in this document were carried out at the IUAC, New Delhi, India using the accelerated heavy ion beams provided by the 15 UD Pelletron accelerator of the centre. We wish to put on record our heartfelt thanks to Professor Amit Roy, ex-Director and Dr Dinakar Kanjilal, the present Director of IUAC, New Delhi, for their kind cooperation and for extending all facilities required during these experiments. We thank the Pelletron crew, who provided the beams of desired ions of required energy and fluence.

Authors also wish to thank the Department of Physics and the Aligarh Muslim University, respectively for extending departmental facilities and administrative support required to successfully complete the research projects that facilitated these investigations.

Financial support in the form of research projects sanctioned by the University Grants Commission (UGC), Council for Scientific and Industrial Research (CSIR) and Department of Science and Technology (DST), Government of India is thankfully acknowledged.

#### xxiv Acknowledgements

We both wish to say a big thank you to Mr Gauravjeet Singh Reen, the young, smart, prompt and extremely polite but firm commissioning editor at Cambridge University Press, India for his continued cooperation in communicating with the publishers.

Though last but not the least, we wish to thank our families for their continued support.