CONTENTS

List of Figures ix
List of Tables xxi
Foreword I xxiii
Foreword II xxv
Preface xxvii
Acknowledgments xxxi

1. Atoms and Molecules as Bound Quantum Systems
1.1 Introduction – A Brief History of the Study of Electron Scattering
1.2 The Hydrogen Atom and Multi-Electron Atoms
1.3 Atomic Properties – Atomic Radii
1.4 Molecular Structure and Properties

2. Quantum Scattering Theories
2.1 Definition of Electron Scattering Cross Sections
2.2 Description of Experimental Measurements
2.3 High Energy Electron Scattering
2.4 Partial Wave Complex Potential Formalism
2.5 Scattering from Atomic and Molecular Hydrogen
2.6 Conclusions

3. Electron Atom Scattering and Ionization
3.1 Introduction
3.2 Inert Gas Atoms
3.3 Oxygen, Nitrogen, and Carbon
3.4 Other Atomic Targets
3.5 Metastable Atomic Species
3.6 General Trends and Correlations in Electron–Atom Scattering

4. Electron Molecule Scattering and Ionization – I: Small Molecules and Radicals
4.1 The Nitrogen Molecule
4.2 Other Diatomic and Well-Known Targets

Contents

4.3 The Water Molecule, Its Derivatives OH, HO₂, H₂O₂, and the Water Dimer (H₂O)₂ 105
4.4 Methane, CH₄, and the Radicals CHₓ (x = 1, 2, and 3) 114
4.5 Other Common Molecules and Their Radicals 119
4.6 Reactive Species CN, C₂N₂, HCN, and HNC; BF 123
4.7 Metastable Species of Molecular Hydrogen and Nitrogen 126
4.8 General Trends and Correlations 128

5. Electron Molecule Scattering and Ionization – II: Other Polyatomic Molecules and Radicals 130
5.1 Small Polyatomic Molecules 131
5.2 Two-center Systems, Small Hydrocarbons, etc. 140
5.3 Larger Tetrahedral and Other Molecules 147
5.4 Heavier Polyatomics 159
5.5 Larger Hydrocarbons and Fluorocarbons 165
5.6 Molecules of Biological Interest 172
5.7 General Trends and Correlations 175

6. Applications of Electron Scattering 177
6.1 Electron Scattering Processes in Nature and Technology 178
6.2 Electron Scattering in Different Phases of Matter 180
6.3 The Terrestrial Atmosphere 188
6.4 The Role of Electron Collisions in Planetary Atmospheres and Comets 190
6.5 The Role of Electrons in Astrophysics and Astrochemistry 198
6.6 Electrons and Nanotechnology 202
6.7 Scattering under External Plasma Confinements 206
6.8 Biomolecular Targets and Radiation Damage 208
6.9 Positron Atom/Molecule Scattering 212
6.10 Conclusions: the Future of Electron Scattering 217

Bibliography 219

Index 249