1

2

3

Cambridge University Press & Assessment 978-1-108-49883-8 — A Guide to Fluid Mechanics Hongwei Wang Table of Contents <u>More Information</u>

Contents

Foreword		pag
Non	Nomenclature	
Fluid	ds and Fluid Mechanics	
1.1	Fluids: Basic Concepts	
1.2	Some Properties of Fluids	
	1.2.1 Viscosity of Fluids	
	1.2.2 Surface Tension of Liquids	
	1.2.3 Equation of State for Gases	
	1.2.4 Compressibility of Gases	
	1.2.5 Thermal Conductivity of Gases	
1.3	The Concept of Continuum	
1.4	Forces in a Fluid	
Expa	anded Knowledge	
	States of Matter	
	Compressibility of Water	
	Compressibility of Solids	
Que	stions	
Forc	es in a Static Fluid	
2.1	Analysis of Forces in a Static Fluid	
2.2	Pressure in a Static Fluid under the Action of Gravity	
2.3	Pressure in a Fluid under the Action of Inertial Forces	
2.4	Differences and Similarities in the Transfer of Force by	
	Fluids and Solids	
Expa	anded Knowledge	
	Atmospheric Pressure	
	Pressure Measurement	
Que	stions	
Des	cription of Fluid Motion	
3.1	Methods of Describing Fluid Motion	
3.2	Pathlines and Streamlines	
	Velocity, Acceleration, and Substantial Derivative	
3.3	veroenty, receleration, and Substantial Derivative	

vi	Contents	
	3.5 Relationship between the Reynolds Transport Theorem and	
	Substantial Derivative	43
	3.6 The Incompressibility Hypothesis	45
	3.7 Motion and Deformation of a Fluid Element	47
	3.7.1 Linear Deformation of a Fluid Element	50
	3.7.2 Rotation of a Fluid Element	52 53
	3.7.3 Angular Deformation of a Fluid Element Expanded Knowledge	55 54
	Streaklines and Their Applications	54
	Streamline Coordinates	54
	Questions	56
4	Basic Equations of Fluid Dynamics	57
	4.1 Integral and Differential Approach	57
	4.2 Continuity Equation	59
	4.2.1 Continuity Equation: Integral Form	59
	4.2.2 Conversion from Integral to Differential Equation	61
	4.2.3 Differential Equation for an Elemental Control Volume	62
	4.3 Momentum Equation	65
	4.3.1 Integral Form of the Momentum Equation	65
	4.3.2 Differential Momentum Equation	67
	4.4 Bernoulli's Equation	74
	4.5 Angular Momentum Equation	80
	4.5.1 Integral Angular Momentum Equation	80
	4.5.2 Differential Angular Momentum Equation4.6 Energy Equation	81 83
	4.6.1 Integral Energy Equation	83
	4.6.2 Differential Energy Equation	88
	4.6.3 Equations of Enthalpy, Entropy, Total Enthalpy, and Shaft Work	95
	4.7 Solution of the Governing Equations	99
	4.7.1 Boundary Conditions	99
	4.7.2 Some Analytical Solutions of N-S Equations	101
	Expanded Knowledge	104
	A Comparison between Constitutive Equations for Fluids and Solids	104
	Mathematical Properties of N-S Equations	105
	Solving Flow Problems	106
	Questions	107
5	Inviscid Flow and Potential Flow Method	108
	5.1 Characteristics of Inviscid Flow	108
	5.2 Inviscid Rotational Flow	109
	5.2.1 Vorticity Generated by Viscous Force	113
	5.2.2 Vorticity Generation in Baroclinic Flow	114
	5.2.3 Vorticity Generation with Nonconservative Body Forces	116

CAMBRIDGE

	Contents	vii
	5.3 Irrotational Flow and Velocity Potential	117
	5.4 Planar Potential Flow	118
	5.4.1 Uniform Flow	119
	5.4.2 Point Source and Point Sink	119
	5.4.3 Point Vortex	120
	5.4.4 Dipole	120
	5.4.5 Uniform Flow Around a Circular Cylinder	121
	5.5 Complex Potential	123
	5.5.1 A More Concise Expression	123
	5.5.2 Conformal Transformations	124
	5.5.3 The Method of Images	125
	5.6 Engineering Applications of Potential Flow and Its Current Status	126
	Expanded Knowledge	126
	Complex Variable Functions and Fluid Mechanics	126 127
	Questions	127
6	Viscous Shear Flow	128
	6.1 Shearing Motion and Flow Patterns of Viscous Fluids	128
	6.2 Laminar Boundary Layer	131
	6.2.1 Prandtl's Boundary Layer Equations for Two-Dimensional Flow	vs 132
	6.2.2 Boundary Layer Thickness	136
	6.2.3 Integral Approach for Solving Boundary Layer Problems	140
	6.3 Turbulent Boundary Layer	145
	6.4 Pipe Flow	151
	6.4.1 Entrance Region	152
	6.4.2 Fully Developed Region	155
	6.5 Jets and Wakes	160
	6.5.1 Jets	160
	6.5.2 Wake	161
	6.6 Boundary Layer Separation	163
	6.7 Drag and Losses	169
	6.7.1 Drag	169
	6.7.2 Flow Losses	178
	Expanded Knowledge	185 185
	The Theory of Homogeneous Isotropic Turbulence Numerical Computation of Turbulent Flows	185
	Turbulent Boundary Layer Separation	187
	Questions	189
	Questions	10)
7	Fundamentals of Compressible Flow	191
	7.1 Sound Speed and Mach Number	191
	7.1.1 Speed of Sound	192
	7.1.2 Mach Number	194
	7.2 Steady Isentropic Flow Equations	196

CAMBRIDGE

viii	Contents	
	7.2.1 Static and Total Parameters	197
	7.2.2 Critical State and Coefficient of Velocity	200
	7.2.3 Gasdynamic Functions	204
	7.3 Expansion Wave, Compression Wave, and Shock Wave	207
	7.3.1 Pressure Waves in Fluids	208
	7.3.2 Normal Shock Wave	212
	7.3.3 Oblique Shock Wave	213
	7.4 Isentropic Flow in a Variable Cross-Section Pipe	217
	7.4.1 Converging Nozzle	217
	7.4.2 Laval Nozzle	222
	Expanded Knowledge	226
	Aerodynamic Heating	226
	Shock Wave–Boundary Layer Interaction	228
	Questions	228
8	Similarity and Dimensional Analysis	230
	8.1 The Concept of Flow Similarity	230
	8.2 Dimensionless Numbers	231
	8.2.1 Reynolds Number	232
	8.2.2 Mach Number	234
	8.2.3 Strouhal Number	236
	8.2.4 Froude Number	236
	8.2.5 Euler Number	237
	8.2.6 Weber Number	238
	8.3 Governing Equations in Dimensionless Form	238
	8.4 Flow Modeling and Analysis	240
	8.4.1 Low-Speed Incompressible Flow	240
	8.4.2 High-Speed Compressible Flow	242
	8.4.3 A Real-Life Example: A Milk Drop	243
	Expanded Knowledge	244
	Flows at Extremely Low Reynolds Numbers	244
	Questions	245
9	Analysis of Some Flow Phenomena	246
	9.1 What Are the Shapes of Objects in Outer Space? Properties of Fluids	246
	9.2 Upside-Down Cup of Water: Incompressibility of Liquids	247
	9.3 Air Blockage: Compressibility of Gases	251
	9.4 How Balloons Create Thrust: Momentum Theorem	252
	9.5 Thrust of a Water Rocket: Independent of Working Substance	254
	9.6 Turbojet Engine Thrust: On Which Components?	255
	9.7 Total Pressure and Its Measurement: Not a Property of Fluids	256
	9.8 Why Does a Converging Flow Accelerate? Balance of Basic Laws	260
	9.9 Impulsive Force and Stagnation Pressure: Relationship between the	
	Momentum Equation and Bernoulli's Equation	263
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

CAMBRIDGE

	Contents	ix
9.10	Pressure of Jet Flow: A Pressure-Dominated Flow	265
9.11	Faucet Flow Control: Total Pressure Determines Jet Speed	267
9.12	Squeeze the Outlet of a Hose to Increase Velocity: Total Pressure	
	Determines Jet Speed	269
9.13	Suction and Blow: Pressure-Dominated Flows	271
9.14	Wind Near Buildings: Complex Three-Dimensional Unsteady Flow	272
9.15	Coandă Effect: Viscous Effect is Indispensable	275
9.16	Shape of a Raindrop: Surface Tension and Pressure Distribution	277
9.17	Vacuum Effects in Racing Cars Related to Incoming Flow Velocity	280
9.18	Larger in Size, Longer in Range: Scale Effect	280
9.19	Meandering of Rivers: Pressure-Dominated Channel Vortex	283
9.20	Tea Leaves Gather in the Middle of the Cup: Another Channel Vortex	284
9.21	Iron Ox Moves Upstream: Pressure-Dominated Horseshoe Vortex	285
9.22	Pressure Change by a Passing Train: Not Just Bernoulli's Equation	287
9.23	How Lift Is Created: The Coandă Effect is the Key	290
9.24	Principle of Heat Engines: Working Substance Must be Compressible	295
9.25	Principle of Compressors: Work Done by Unsteady Pressure Forces	300
Bibl	iography	303