A Guide to Fluid Mechanics

This book is written for the learner's point of view, with the purpose of helping readers understand the principles of flow. The theory is explained using ordinary and accessible language, where fluid mechanics is presented in analogy to solid mechanics to emphasize that they are all the application of Newtonian mechanics and thermodynamics. All the informative and helpful illustrations are drawn by the author, uniting the science and the art with figures that complement the text and provide clear understanding. Another unique feature is that one of the chapters is wholly dedicated to providing 25 selected interesting and controversial flow examples, with the purpose of linking theory with practice. The book will be useful to both beginners in the field and experts in other fields, and is ideal for college students, graduate students, engineers, and technicians.

Hongwei Wang graduated from Beihang University with a PhD major in turbomachinery and has been teaching fluid mechanics for 20 years. His key publication is the Chinese edition textbook *Fluid Mechanics as I Understand It*, published in December 2014, followed by the second edition published in March 2019. This book is no.1 best seller in fluid mechanics at China's biggest online retailer.

A Guide to Fluid Mechanics

HONGWEI WANG Beihang University, Beijing

Translated by

YAN ZHANG School of Computer and Software Engineering, Nanyang Institute of Technology

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108498838

DOI: 10.1017/9781108671149

Original Title: 我所理解的流体力学(第2版) © National Defense Industry Press 2019 English edition translated by Yan Zhang © Cambridge University Press 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2023

A catalogue record for this publication is available from the British Library.

A Cataloging-in-Publication data record for this book is available from the Library of Congress.

ISBN 978-1-108-49883-8 Hardback ISBN 978-1-108-71278-1 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

1

2

3

Cambridge University Press & Assessment 978-1-108-49883-8 — A Guide to Fluid Mechanics Hongwei Wang Frontmatter <u>More Information</u>

Contents

For	eword	page
Nomenclature		
Flui	ds and Fluid Mechanics	
1.1	Fluids: Basic Concepts	
1.2	Some Properties of Fluids	
	1.2.1 Viscosity of Fluids	
	1.2.2 Surface Tension of Liquids	
	1.2.3 Equation of State for Gases	
	1.2.4 Compressibility of Gases	
	1.2.5 Thermal Conductivity of Gases	
1.3	The Concept of Continuum	
1.4	Forces in a Fluid	
Exp	anded Knowledge	
	States of Matter	
	Compressibility of Water	
	Compressibility of Solids	
Que	stions	
Ford	ces in a Static Fluid	
2.1	Analysis of Forces in a Static Fluid	
2.2	Pressure in a Static Fluid under the Action of Gravity	
2.3	Pressure in a Fluid under the Action of Inertial Forces	
2.4	Differences and Similarities in the Transfer of Force by	
	Fluids and Solids	
Exp	anded Knowledge	
	Atmospheric Pressure	
	Pressure Measurement	
Que	stions	
Des	cription of Fluid Motion	
Des 3.1	cription of Fluid Motion Methods of Describing Fluid Motion	
Des 3.1 3.2	cription of Fluid Motion Methods of Describing Fluid Motion Pathlines and Streamlines	
Des 3.1 3.2 3.3	cription of Fluid Motion Methods of Describing Fluid Motion Pathlines and Streamlines Velocity, Acceleration, and Substantial Derivative	

© in this web service Cambridge University Press & Assessment

vi	Contents		
	3.5 Relationship between the Reynolds Transport Theorem and		
	Substantial Derivative	43	
	3.6 The Incompressibility Hypothesis	45	
	3.7 Motion and Deformation of a Fluid Element	47	
	3.7.1 Linear Deformation of a Fluid Element	50	
	3.7.2 Rotation of a Fluid Element	52	
	3.7.3 Angular Deformation of a Fluid Element	53	
	Expanded Knowledge	54	
	Streamline Coordinates	54 54	
	Questions	56	
	Questions	50	
4	Basic Equations of Fluid Dynamics	57	
	4.1 Integral and Differential Approach	57	
	4.2 Continuity Equation	59	
	4.2.1 Continuity Equation: Integral Form	59	
	4.2.2 Conversion from Integral to Differential Equation	61	
	4.2.3 Differential Equation for an Elemental Control Volume	62	
	4.3 Momentum Equation	65	
	4.3.1 Integral Form of the Momentum Equation	65	
	4.3.2 Differential Momentum Equation	67	
	4.4 Bernoulli's Equation	74	
	4.5 Angular Momentum Equation	80	
	4.5.1 Integral Angular Momentum Equation	80	
	4.5.2 Differential Angular Momentum Equation	81	
	4.0 Energy Equation	83 02	
	4.6.2 Differential Energy Equation	00	
	4.6.3 Equations of Enthalpy Entropy Total Enthalpy and Shaft Work	00	
	4.7 Solution of the Governing Equations	90	
	4.7 1 Boundary Conditions	99	
	4.7.2 Some Analytical Solutions of N-S Equations	101	
	Expanded Knowledge	104	
	A Comparison between Constitutive Equations for Fluids and Solids	104	
	Mathematical Properties of N-S Equations	105	
	Solving Flow Problems	106	
	Questions	107	
5	Inviscid Flow and Potential Flow Method	108	
	5.1 Characteristics of Inviscid Flow	108	
	5.2 Inviscid Rotational Flow	109	
	5.2.1 Vorticity Generated by Viscous Force	113	
	5.2.2 Vorticity Generation in Baroclinic Flow	114	
	5.2.3 Vorticity Generation with Nonconservative Body Forces	116	

© in this web service Cambridge University Press & Assessment

	Contents	vii
	5.3 Irrotational Flow and Velocity Potential	117
	5.4 Planar Potential Flow	118
	5.4.1 Uniform Flow	119
	5.4.2 Point Source and Point Sink	119
	5.4.3 Point Vortex	120
	5.4.4 Dipole	120
	5.4.5 Uniform Flow Around a Circular Cylinder	121
	5.5 Complex Potential	123
	5.5.1 A More Concise Expression	123
	5.5.2 Conformal Transformations	124
	5.5.3 The Method of Images	125
	5.6 Engineering Applications of Potential Flow and Its Current Status	126
	Expanded Knowledge	126
	Complex variable Functions and Fluid Mechanics	120
	Questions	127
6	Viscous Shear Flow	128
	6.1 Shearing Motion and Flow Patterns of Viscous Fluids	128
	6.2 Laminar Boundary Layer	131
	6.2.1 Prandtl's Boundary Layer Equations for Two-Dimensional F	lows 132
	6.2.2 Boundary Layer Thickness	136
	6.2.3 Integral Approach for Solving Boundary Layer Problems	140
	6.3 Turbulent Boundary Layer	145
	6.4 Pipe Flow	151
	6.4.1 Entrance Region	152
	6.4.2 Fully Developed Region	155
	6.5 Jets and Wakes	160
	6.5.1 Jets	160
	6.5.2 Wake	161
	6.6 Boundary Layer Separation	163
	6.7 Drag and Losses	169
	6.7.1 Drag	169
	6./.2 Flow Losses	1/8
	Expanded Knowledge	185
	Numerical Computation of Turbulant Flows	103
	Turbulant Poundary Layor Separation	18/
	Questions	189
	Questions	109
7	Fundamentals of Compressible Flow	191
	7.1 Sound Speed and Mach Number	191
	7.1.1 Speed of Sound	192
	7.1.2 Mach Number	194
	7.2 Steady Isentropic Flow Equations	196

viii	Contents	
	7.2.1 Static and Total Parameters	197
	7.2.2 Critical State and Coefficient of Velocity	200
	7.2.3 Gasdynamic Functions	204
	7.3 Expansion Wave, Compression Wave, and Shock Wave	207
	7.3.1 Pressure Waves in Fluids	208
	7.3.2 Normal Shock Wave	212
	7.3.3 Oblique Shock Wave	213
	7.4 Isentropic Flow in a Variable Cross-Section Pipe	217
	7.4.1 Converging Nozzle	217
	7.4.2 Laval Nozzle	222
	Expanded Knowledge	226
	Aerodynamic Heating	226
	Shock Wave–Boundary Layer Interaction	228
	Questions	228
8	Similarity and Dimensional Analysis	230
	8.1 The Concept of Flow Similarity	230
	8.2 Dimensionless Numbers	231
	8.2.1 Reynolds Number	232
	8.2.2 Mach Number	234
	8.2.3 Strouhal Number	236
	8.2.4 Froude Number	236
	8.2.5 Euler Number	237
	8.2.6 Weber Number	238
	8.3 Governing Equations in Dimensionless Form	238
	8.4 Flow Modeling and Analysis	240
	8.4.1 Low-Speed Incompressible Flow	240
	8.4.2 High-Speed Compressible Flow	242
	8.4.3 A Real-Life Example: A Milk Drop	243
	Expanded Knowledge	244
	Flows at Extremely Low Reynolds Numbers	244
	Questions	245
9	Analysis of Some Flow Phenomena	246
	9.1 What Are the Shapes of Objects in Outer Space? Properties of Fluids	246
	9.2 Upside-Down Cup of Water: Incompressibility of Liquids	247
	9.3 Air Blockage: Compressibility of Gases	251
	9.4 How Balloons Create Thrust: Momentum Theorem	252
	9.5 Thrust of a Water Rocket: Independent of Working Substance	254
	9.6 Turbojet Engine Thrust: On Which Components?	255
	9.7 Total Pressure and Its Measurement: Not a Property of Fluids	256
	9.8 Why Does a Converging Flow Accelerate? Balance of Basic Laws	260
	9.9 Impulsive Force and Stagnation Pressure: Relationship between the	
	Momentum Equation and Bernoulli's Equation	263
	* 1	

	Contents	ix
9.10	Pressure of Jet Flow: A Pressure-Dominated Flow	265
9.11	Faucet Flow Control: Total Pressure Determines Jet Speed	267
9.12	Squeeze the Outlet of a Hose to Increase Velocity: Total Pressure	
	Determines Jet Speed	269
9.13	Suction and Blow: Pressure-Dominated Flows	271
9.14	Wind Near Buildings: Complex Three-Dimensional Unsteady Flow	272
9.15	Coandă Effect: Viscous Effect is Indispensable	275
9.16	Shape of a Raindrop: Surface Tension and Pressure Distribution	277
9.17	Vacuum Effects in Racing Cars Related to Incoming Flow Velocity	280
9.18	Larger in Size, Longer in Range: Scale Effect	280
9.19	Meandering of Rivers: Pressure-Dominated Channel Vortex	283
9.20	Tea Leaves Gather in the Middle of the Cup: Another Channel Vortex	284
9.21	Iron Ox Moves Upstream: Pressure-Dominated Horseshoe Vortex	285
9.22	Pressure Change by a Passing Train: Not Just Bernoulli's Equation	287
9.23	How Lift Is Created: The Coandă Effect is the Key	290
9.24	Principle of Heat Engines: Working Substance Must be Compressible	295
9.25	Principle of Compressors: Work Done by Unsteady Pressure Forces	300
Bibl	iography	303

Foreword

This book is written from the perspective of learners. Its aim is to elucidate the physical principles of flow, rather than be oriented toward engineering calculations. There are no example solutions or exercises in this book, so readers can understand the principles of fluid mechanics and enjoy the beauty of fluid motion with a relatively easy and interesting reading experience.

Socrates said: "Education is the kindling of a flame." Learning is a very personal thing. Only learners themselves can determine the success of learning. It is quite common for teachers to be enthused and excited on the podium while their students sleep soundly below. Regardless of how extensive the content of a textbook may be, how in-depth its discussions, and how rigorous its logic, if no one is willing to read it, its value will not be appreciated.

Science books should not be strictly divided into textbooks and popular science books. It is very important to get readers interested and to understand the so-called profound theories in an accessible way. Textbooks addressed to students should analyze problems from the learner's perspective, so that more students can enjoy the beauty of science through them, rather than developing a love of science by reading popular accounts of it. Rigor and popularity need not exclude each other. Through our efforts, we strive not only to maintain the scientific level of the discussion, but also to make it easier for readers to understand.

It should be the responsibility and obligation of teachers to deeply understand the subject and then to present it in an even more understandable way. This is a creative process that may be called the "reprocessing" of knowledge. In fact, the knowledge we have acquired is more or less written after "reprocessing" of knowledge. There is no need to write another book if it only repeats what has already been said in previous books. While original discoveries and inventions are certainly important, the "reprocessing" and dissemination of knowledge are the keys to wider application. Euclid's *Elements of Geometry* and Newton's *Mathematical Principles of Natural Philosophy* are classic theoretical books. Nowadays, however, the teaching materials for college students are not these abstruse works, but more understandable versions written by Euclid's newton's successors who have mastered that ancient erudition.

A good textbook is not simply a restatement of facts, but a creative process rich in contributions. When I was a student, in addition to learning in class, I also studied, as a hobby, the teachers' lecturing styles. By comparing the way my teachers and I

xii Foreword

understood a topic, I figured out why students understood when teachers lectured in a certain way, and why it wasn't easy for them to grasp a concept when it was taught in a different way. I finally became a teacher myself. I naturally love teaching and I am appreciated by my students. At the beginning my focus was on preparing lectures and teaching methods. Later, I paid attention to knowledge understanding and student responses, thus achieving a reverse transformation from educator to learner. Now I regard every class as a new learning opportunity. During classroom sessions new questions constantly pop into my head, and I can often deepen my knowledge and gain new insights, which is what every student should do in class. As I have my own unique understanding of what is taught, I believed that it should be written down for more people to see it and benefit from it. That's why I wrote this book.

However, there are risks in publishing my own understanding of fluid mechanics. One's interpretations could be faulty, or not rigorous enough. Will these shortcomings mislead students? I think this is why, although many teachers can make their teaching lively in class, the textbooks they write are obscure or difficult to understand. If we faithfully follow classical works and take rigor as the highest priority, it is not necessary to write another introductory book on some well-established area such as fluid mechanics. Therefore, I decided to take the risk and write a book based on my personal understanding of the subject, which I believe will be helpful to junior readers of fluid mechanics.

Now, let me introduce the contents and characteristics of this book. It is not a popular science book, but can be used as a textbook. For this, it only needs to be supplemented with examples and exercises. There are numerous formulas and derivations in the book, even more than in many undergraduate textbooks. It is said that each additional formula will scare one reader away. I admit that this claim may be right. However, scaring your readers away does not necessarily need formulas. There are actually very few formulas in Newton's *Mathematical Principles of Natural Philosophy*, but it is not any easier to read than modern textbooks that contain plenty of formulas. After all, mathematics is the language of science, and I have no intention of weakening its role. On the contrary, I even hope that readers will have a deeper understanding of some mathematical concepts through the application of them to mechanics.

Compared with existing teaching materials and books on the same topic, this one has some distinctive characteristics, among which the many exquisite color pictures are the most intuitive. All of these pictures have been hand-drawn by myself. Of course, some drawings refer to relevant books, but I tried to strike a balance between scientific accuracy and aesthetics. I can guarantee that all curve graphics can be directly used as a reference for engineering applications, and all flow images are in line with the actual conditions.

In the final chapter I included 25 interesting and useful flow examples for in-depth analysis, so that readers can enjoy the experience of learning and applying their knowledge. For example: What is the shape of falling raindrops? Why will outlet velocity increase if you squeeze the outlet of a watering hose? As long as their thinking is inquisitive, anyone who has learned the basics of fluid mechanics should be able to explain these everyday phenomena.

Foreword

xiii

This book is suitable as a supplementary textbook for students, as well as for selfstudy material for engineering and technical personnel. Readers who are studying fluid mechanics for the first time, and using this book as a textbook or as self-study material, will find that a large number of concepts in classical physics, theoretical mechanics, and solid mechanics are used. Therefore, they do not need to regard fluid mechanics as a completely separate discipline, which will make their learning easier. By placing understanding at its core, this book is also highly suitable as a textbook for those who have studied fluid mechanics before and seek to refresh their knowledge of it.

I hope that this translated version of the book brings a new experience to English-language readers, and I would be very happy if it could also provide them with a deeper understanding of some facts or concepts.

I am indebted to my alumni Dr. Yan Zhang, who translated the entire book from Chinese into English, for his elaborate work. Also, the extensive efforts and excellent work of Prof. Arturo Sangalli are truly appreciated, for the intensive grammar checking and creative text polishing.

Nomenclature

Notation

\vec{f}	Vector quantities
\overline{f}	Average of f
f'	(1) Derivative of f
	(2) Perturbation of f
f^{*}	Dimensionless value of f
$f_{\rm cr}$	Critical value of f
f_{∞}	Value of f far away from the point of interest
Δf	Change of f
δf	Infinitesimal change of f
df	(1) Differential of f
	(2) Infinitesimal change of f
$\mathrm{D}f/\mathrm{D}t$	Material derivative of f

Letters

a	(1) Speed of sound
	(2) Acceleration
Α	Area or surface
AR	Diffuser or nozzle area ratio (exit area/inlet area)
В	Volume
const	A constant
c _p	Specific heat at constant pressure
C _v	Specific heat at constant volume
$C_{ m f}$	Skin friction parameter
C _p	Pressure rise coefficient
$\dot{C_{\rm D}}$	Drag coefficient
d	Diameter
D	(1) Diameter
	(2) Drag force
e	Total energy per unit mass

Cambridge University Press & Assessment 978-1-108-49883-8 — A Guide to Fluid Mechanics Hongwei Wang Frontmatter <u>More Information</u>

Nomenclature

XV

Ε	Total energy
Eu	Euler number
f	(1) Force per unit mass
	(2) Friction factor
f_{b}	Body force per unit mass
F	Force
Fr	Froude number
g	Gravitational acceleration
G	Gravitational force
h	(1) Enthalpy per unit mass
	(2) Height
h_{t}	Stagnation enthalpy per unit mass
Н	Boundary layer shape factor
i	Imaginary root
k	(1) Thermal conductivity
	(2) Specific heat ratio
L	Length
m	Mass
ṁ	Mass flow rate
Μ	Molar mass
Ма	Mach number
n	Normal unit vector
p	Pressure
p_0	Atmospheric pressure
$p_{\rm t}$	Stagnation pressure
ġ	Rate of heat per unit mass
\dot{q}_x	Rate of heat per unit mass per unit area
$q(\lambda), q(Ma)$	Mass flow function
Ż	Rate of heat
r, R	Radius
\vec{r}	Position vector
R	Gas constant of air
R_0	Universal gas constant
Re	Reynolds number
S	(1) Entropy per unit mass
	(2) Streamwise unit vector
S	Entropy
St	Strouhal number
t	Time
Т	Temperature
$T_{\rm t}$	Stagnation temperature
u, v, w	Velocity components in Cartesian coordinates
u_i	Velocity components in Tensor form

xvi

Cambridge University Press & Assessment 978-1-108-49883-8 — A Guide to Fluid Mechanics Hongwei Wang Frontmatter <u>More Information</u>

Nomenclature

û	Internal energy
U	Reference velocity or characteristic velocity
V	(1) Velocity component in <i>y</i> direction
	(2) Specific volume (volume per unit mass)
V	Velocity magnitude
W	(1) Velocity component in z direction
	(2) Work per unit mass
w _s	Shaft work per unit mass
W	Work
We	Weber number
x, y, z	Cartesian coordinates

Symbols

α	Planar diffuser half-angle
β	Shock angle
Γ	(1) Stress
	(2) Circulation
δ	(1) Deflection angle
	(2) Boundary layer thickness
δ_{ii}	Kronecker delta
δ^{*}	Boundary layer displacement thickness
Δ	Difference of change
ε	Strain rate
η	Dimensionless distance from wall
$\dot{\theta}$	(1) Boundary layer momentum thickness
	(2) Circumferential coordinate
λ	(1) Coefficient of thermal conductivity
	(2) Coefficient of velocity
μ	Dynamic viscosity
ν	Kinematic viscosity
ρ	Density
Ψ	Stream function
τ	Shear stress
ϕ	(1) Velocity potential
	(2) Some mechanical property per unit mass
Φ	Some mechanical property
$\Phi_{\rm v}$	Dissipation function
ω	Vorticity
Ω	Angular velocity

Cambridge University Press & Assessment 978-1-108-49883-8 — A Guide to Fluid Mechanics Hongwei Wang Frontmatter <u>More Information</u>

Nomenclature

xvii

Subscripts

b	Body (as in body force)
с	Center or core
cr	Critical condition
cv	Control volume
D	(1) Diameter (as in Reynolds number)
	(2) Drag (as in drag force)
e	Exit station
i	Inlet station
i, j, k	Indices of Tensor
n	Normal direction or component
r	Radial direction or component
S	Streamwise direction
sys	System
t	Stagnation condition
<i>x</i> , <i>y</i> , <i>z</i>	Components in x , y , z directions