

Fundamentals of Developmental Cognitive Neuroscience

An exciting introduction to the scientific interface between biological studies of the brain and behavioral studies of human development. The authors trace the field from its roots in developmental psychology and neuroscience, and highlight some of the most persuasive research findings before anticipating future directions the field may take. They begin with a brief orientation of the brain, along with genetics and epigenetics, and then summarize brain development and plasticity. Later chapters detail the neurodevelopmental basis of a wide variety of human competencies, including perception, language comprehension, socioemotional development, memory systems, literacy and numeracy, and self-regulation. Suitable for advanced undergraduate and graduate courses in developmental cognition or neuroscience, this textbook covers the prenatal period through to infancy, childhood, and adolescence. It is pedagogically rich, featuring interviews with leading researchers, learning objectives, review questions, further-reading recommendations, and numerous color figures. Instructor teaching is supported by lecture slides and a test bank.

Heather Bortfeld is Professor of Psychological Sciences and Cognitive and Information Sciences at the University of California, Merced. She has been a pioneer in the development of functional near-infrared spectroscopy (fNIRS) as a tool for measuring changes in brain activity in infants and toddlers as they engage with the world around them. She is currently the Emmett, Bernice, and Carlston Cunningham Endowed Chair in Cognitive Development at UC Merced, and an elected Fellow of the Association for Psychological Sciences.

Silvia A. Bunge is Professor of Psychology at the University of California, Berkeley, and directs the Building Blocks of Cognition Laboratory, which draws from the fields of cognitive neuroscience, developmental psychology, and education research. She studies the development of higher-level cognitive abilities, how they are shaped by experience, and how they support academic success. Professor Bunge is an elected Fellow of the Association for Psychological Sciences and the Humboldt Society of Experimental Psychologists.

Cambridge Fundamentals of Neuroscience in Psychology

Developed in response to a growing need to make neuroscience accessible to students and other non-specialist readers, the *Cambridge Fundamentals of Neuroscience in Psychology* series provides brief introductions to key areas of neuroscience research across major domains of psychology. Written by experts in cognitive, social, affective, developmental, clinical, and applied neuroscience, these books will serve as ideal primers for students and other readers seeking an entry point to the challenging world of neuroscience.

Books in the Series

The Neuroscience of Expertise by Merim Bilalić

The Neuroscience of Intelligence by Richard J. Haier

Cognitive Neuroscience of Memory by Scott D. Slotnick

The Neuroscience of Adolescence by Adriana Galván

The Neuroscience of Suicidal Behavior by Kees van Heeringen

The Neuroscience of Creativity by Anna Abraham

Cognitive and Social Neuroscience of Aging by Angela Gutchess

The Neuroscience of Sleep and Dreams by Patrick McNamara

The Neuroscience of Addiction by Francesca Mapua Filbey

The Neuroscience of Sleep and Dreams, 2e, by Patrick McNamara

The Neuroscience of Intelligence, 2e, by Richard J. Haier

The Cognitive Neuroscience of Bilingualism by John W. Schwieter and Julia Festman

Fundamentals of Developmental Cognitive Neuroscience by Heather Bortfeld and Silvia A. Bunge

Fundamentals of Developmental Cognitive Neuroscience

Heather Bortfeld

University of California, Merced

Silvia A. Bunge

University of California, Berkeley

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/highereducation/isbn/9781108498760

DOI: 10.1017/9781108595827

© Heather Bortfeld and Silvia A. Bunge 2024

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2024

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Names: Bortfeld, Heather, 1969– author. | Bunge, Silvia A., author. Title: Fundamentals of developmental cognitive neuroscience / Heather Bortfeld, University of California, Merced, Silvia A. Bunge, University of California, Berkeley.

Description: Cambridge, United Kingdom; New York, NY: Cambridge University Press, 2024. | Series: Cambridge fundamentals of neuroscience in psychology | Includes bibliographical references.

Identifiers: LCCN 2023034039 | ISBN 9781108498760 (hardback) |

ISBN 9781108595827 (ebook)

Subjects: LCSH: Cognitive neuroscience – Textbooks. | Developmental neurobiology – Textbooks. | Developmental psychology – Textbooks. Classification: LCC QP360.5 .B67 2024 | DDC 612.8/233–dc23/eng/20231004 LC record available at https://lccn.loc.gov/2023034039

ISBN 978-1-108-49876-0 Hardback ISBN 978-1-108-71256-9 Paperback

Additional resources for this publication at www.cambridge.org/FDCN

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

For Pamela Johnson, Mark Lieb, Gretchen Lieb, Robin Lieb, and Gabriel Lieb. You all helped me become who I am.

- H.B.

My deepest gratitude goes to Mario Bunge (1919–2020) and Marta Bunge (1938–2022) for their inspiration and unwavering support.

- S.A.B.

Contents

Preface Acknowledgments						
1	Intro	Introduction to Developmental Cognitive Neuroscience				
	1.1	What Is Developmental Cognitive Neuroscience?	1			
	1.2	Levels of Analysis and Levels of Structure	2			
		What Do We Gain from Understanding How the Brain Develops?	5			
		Brief History of the Field	6			
	1.5	Why Study Developmental Cognitive Neuroscience? (or How Do I Tell				
		Grandma What I'm Studying?)	8			
		What to Expect	9			
	Refe	erences	9			
2	Met	hods and Populations	11			
	2.1	Studying Behavior across Development	12			
		2.1.1 Study Designs	13			
		2.1.2 Converging Technologies and Methods	15			
	2.2	Behavioral Studies	15			
		2.2.1 Studying Infant Cognition	16			
		2.2.2 Studying Child and Adolescent Cognition	17			
	2.3	Probing Human Brain Structure	19			
		2.3.1 Structural MRI	21			
		2.3.2 Diffusion-Weighted Imaging (DWI)	22			
	2.4	Probing Human Brain Function: Measures of Electrical Activity	25			
		2.4.1 Electroencephalography (EEG)	25			
		2.4.2 Event-Related Potentials (ERPs) Derived from EEG	29			
		2.4.3 Magnetoencephalography (MEG)	31			
	2.5	Probing Human Brain Function: Blood-Based Measures	33			
		2.5.1 Cerebral Blood Volume and Flow	33			
		2.5.2 Overview of fMRI	35			
		2.5.3 fNIRS	37			
	2.6	fMRI Data Analysis	42			
		2.6.1 The Basics	42			
		2.6.2 Interpretation of Pediatric fMRI Data	43			
		2.6.3 Functional Connectivity	44			

vii

viii Contents

	Sun	nmary	48
	Rev	riew Questions	49
	Fur	49	
	Ref	erences	49
3	Gen	es and Epigenetics	54
	3.1	Interactive Specialization	55
	3.2	Tracking Sources of Individual Variation	56
		3.2.1 Heritability	57
		3.2.2 Developmental Variance	58
	3.3	What Genes Are	59
		3.3.1 Genes as Units of Inheritance	59
		3.3.2 Genes as Protein Encoders	62
		3.3.3 The Big Picture	65
	3.4	Genetic Variation	66
		3.4.1 Mitosis	66
		3.4.2 Meiosis	67
	3.5	Mutations	68
		3.5.1 Point Mutations	68
		3.5.2 Single Nucleotide Polymorphisms	70
		3.5.3 Chromosomal Mutations	71
		3.5.4 Environmentally Induced Mutations	71
	3.6	Epigenetics	72
		3.6.1 Evidence of Epigenetic Effects in Humans	73
		3.6.2 DNA Methylation	74
		3.6.3 Histone Modification	75
		3.6.4 The Epigenome as a Product of Gene–Environment	
		Interactions	75
		"Genetic" Is Not Synonymous with "Heritable"	77
	3.8	Neurodevelopmental Disorders (NDDs)	77
		nmary	80
		riew Questions	80
		ther Reading	80
	Ref	erences	81
1	Brai	n Development	84
	4.1	Basics of Brain Anatomy	85
	4.2	Prenatal Brain Development: An Overview	89
	4.3	From First Cell to Newborn	92
		4.3.1 Gastrulation and Neural Induction	92
		4.3.2 Emergence of Early Structure	93
		4.3.3 Process of Neuronal Proliferation and Migration	96
		4.3.4 Neuronal Differentiation and Death	96

				Contents	ix
	44	Postn	atal Brain Development		98
	7.7		Early Cortical Expansion		98
			Large-Scale Changes in Gray and White Matter		100
			Gray Matter Thinning		102
			White Matter Microstructural Changes		104
			Reorganization of Functional Brain Architecture		106
	Sun	nmary	210019411124110110110110110110110110110110110110110		109
		iew Qu	estions		109
		ther Re			110
		erences	<u>5</u>		110
5	Brai	n Plasti	city		114
	5.1	Learn	ing and Development: Broad Categories of Plasticity		115
			Experience-Independent Brain Development		115
		5.1.2	Experience-Expectant Brain Development		116
		5.1.3	Experience-Dependent Brain Development		116
			A Continuum from Development to Learning		117
	5.2	Found	dations of Research on Brain Plasticity		117
		5.2.1	Origins of the Idea		117
			Dendritic Spines		118
			Long-Term Potentiation and Hebbian Plasticity		119
	5.3		acterizing Brain Plasticity		119
			Environmental Enrichment		119
			A Critical Period for Plasticity		121
			Types of Structural Brain Changes		124
	5.4		cal Reorganization under Sensory Deprivation		126
		5.4.1	Somatosensory Deprivation: The Case of the Phantom Limb)	126
			Visual Deprivation: Congenital Blindness		127
		5.4.3	Auditory Deprivation: Congenital Deafness and Cochlear		
			Implantation		129
	5.5		ience-Dependent Plasticity		134
		5.5.1	Musical Training		134
			Dynamics of Plasticity across Skill-Learning		136
	5.6		g of Plasticity		138
			Recovery from Brain Injury		139
		5.6.2	Earlier Is Not Always Better for Recovery from		
			Brain Injury		140
		5.6.3	Multiple Windows of Plasticity across the Brain		140
	5.7		hood Adversity		144
		5.7.1	Brain Plasticity as a Double-Edged Sword		144
			Risks Associated with Adverse Childhood Experiences		145
	~		Dimensions of Childhood Adversity		147
	Sun	nmarv			147

x Contents

6

	view Questions	148
	ther Reading	148
Ref	erences	149
Atte	ention and Perception	155
6.1	Attention	156
	6.1.1 Underpinnings of Arousal	156
	6.1.2 Measuring Attention	157
6.2	Continuity from Pre- to Postnatal Perceptual Development	157
	6.2.1 Little Statisticians	158
	6.2.2 Timing Matters in How Environmental Structure Impacts	
	the Developing Brain	159
6.3	Touch, Taste, Smell	160
6.4	Audition	161
	6.4.1 Overview of the Primary Auditory Pathway	161
	6.4.2 Converting Sound to Neural Energy	161
	6.4.3 Early Hearing Abilities from the Pre- to Postnatal Period	165
	6.4.4 Measurements Specific to Hearing Development	165
6.5		166
	6.5.1 The Neural Basis for Vision	167
	6.5.2 Visual Development: From Reflexive Looking to Visual Control	169
	6.5.3 Segregation of Vision into Dorsal and Ventral Streams	170
	6.5.4 Development of Advanced Visual Processing Capabilities	173
6.6	č	174
	6.6.1 Face Recognition	174
	6.6.2 Dedicated Brain Areas Are Further Tuned to Faces through Experience	175
	6.6.3 Is It Expertise in Faces, or Configurations?	176
	6.6.4 Effects of Face Deprivation	181
6.7	, 1	184
	6.7.1 The Emergence of Experience-Based Integrative Circuitry	184
	6.7.2 Is It Multisensory Integration, or Convergence?	185
C	6.7.3 Novel Approach to Multisensory Research in Infants	186
	nmary	189
	view Questions	189
	ther Reading	190
Ref	erences	190
Soci	ial Cognition	199
7.1	Early Social Cognition	199
	7.1.1 The Developmental Onset of Imitation	200
	7.1.2 Neuronal Mirroring System	201

7

		Contents	xi
	7.1.3 Contingent Learning Is Social Learning		203
	7.1.4 Mental Representations and Distinguishing between S	ocial	202
7.0	and Non-Social Objects		203
7.2	Faces and Eyes Are Social		204
	7.2.1 The Importance of Eye Gaze		205
7.2	7.2.2 A Visual Pathway That Supports Social Perception		206
7.3	Representation of Self and Other		208
	7.3.1 Goal-Directed Actions and Intentionality		208
	7.3.2 False Beliefs and Theory of Mind		210
7.4	7.3.3 Understanding Others' Minds		211
7.4	Brain Basis for Mentalizing		212
	7.4.1 Developmental Time Course of Mentalizing		213
	7.4.2 Interpreting the Data		215
7.5	7.4.3 Changes in Neural Connectivity Support Mentalizing		215
1.5	Mentalizing Supports Learning		217
	7.5.1 Social Referencing and Emotion Regulation	4 1 D	218
	7.5.2 Brain Injury at Different Ages Highlights Developmer	ital Basis	210
7.0	for Social Abilities		219
7.6	Atypical Social Cognition		221
	7.6.1 ASD Phenotype		221
	7.6.2 Advances in ASD Diagnosis		222
	7.6.3 Structural and Functional Indicators of the ASD Brain	n	224
Carre	7.6.4 Early Intervention		225
	nmary		228
	iew Questions		228
	ther Reading erences		229
Reit	erences		229
Lang	guage Learning and Social Interaction		239
8.1	How the Brain Supports Language and How Language Shape	es	
	the Brain		240
8.2	What Is Language?		240
	8.2.1 Building Blocks of Language Comprehension and Pro	duction	241
	8.2.2 Specificity and Universality		243
	8.2.3 Localizing Language in the Adult Brain		243
	8.2.4 Complex Processing: Beyond Localization of Language		246
8.3	Is the Infant Brain Primed for Language? Evidence from Pho	netics	
	and Phonology		248
	8.3.1 Auditory Input Interacts with Developing Brain Struc		248
	8.3.2 Increasing Sensitivity to Language Sound Specific Stru		249
	8.3.3 Neural Correlates of Language Specific Perceptual Tu	ning	251
	8.3.4 Hemispheric Asymmetries		253

8

xii Contents

	8.4	Language Engages the Infant Brain beyond the Language Network	257
		8.4.1 Language Learning Is Contingent Learning	260
		8.4.2 The Importance of Both Quantity and Quality in Speech Input	261
		8.4.3 Bilingualism and Multilingualism	265
	8.5	Is Language a "Special" Ability in the Human Toolkit?	265
	8.6	Coda: Why Don't Non-Human Primates Have Language?	266
	Sum	mary	269
	Revi	ew Questions	269
	Furt	her Reading	270
	Refe	erences	270
9	Men	nory Systems	279
	9.1	Memory as the Foundation for Learning	280
	9.2	Memory Systems	281
		9.2.1 Memory Classification	281
		9.2.2 The Neural Basis of Distinct Memory Systems	283
	9.3	Episodic Memory	286
		9.3.1 Features of Episodic Memory	286
		9.3.2 Is Episodic Memory a Uniquely Human Capacity?	287
		9.3.3 The Medial Temporal Lobes	288
		9.3.4 Episodic Memory Networks	293
	9.4	Development of Memory Systems	294
		9.4.1 Implicit Memory Development	294
		9.4.2 Emergence of Episodic Memory	296
		9.4.3 Improvements in Episodic Memory over Childhood	299
	9.5	Development of the Medial Temporal Lobes	300
		9.5.1 Structural Development	300
		9.5.2 Mechanistic Accounts of Infantile "Amnesia"	301
		9.5.3 Hippocampal Function in Early Childhood	301
		9.5.4 Further Development of Hippocampal Function	304
		9.5.5 Development of Episodic Memory Networks	305
		mary	307
		ew Questions	307
		her Reading	308
	Refe	prences	308
0	Wor	king Memory and Executive Functions	314
	10.1	•	317
		10.1.1 Phonological WM	318
		10.1.2 Visuospatial WM	319
		10.1.3 The "Central Executive" (EFs)	319
	10.2	Measuring WM Capacity	320

			Contents	Xiii
	10.3	WM D	Development Development	322
	10.0		How WM Supports Learning	322
			Age-Related Increases in WM Span	323
			Age-Related Increases in Spatial WM Precision	324
	10.4		Basis of WM	325
		10.4.1	Early Discoveries	325
		10.4.2	Neuroimaging Studies in Adults	327
		10.4.3	Neuromodulatory Influences on WM	328
			Mechanisms of WM	329
	10.5	Neural	Changes That Support the Development of WM	330
		10.5.1	Changes in WM Maintenance over Middle Childhood	
			and Adolescence	330
			Neural Basis of Early WM Development	334
			Neurodevelopmental Improvements in WM with EF Demands	334
			opmental Changes in the Recruitment of Top-Down Control	338
	Sumi	-		340
		ew Ques		341
		ner Reac	ling	341
	Refe	rences		342
11	Lang	uage an	d Literacy	349
	11.1	Readir	ng Paradox	350
		11.1.1	Writing as a Cultural Invention That Has Enabled Reading	350
		11.1.2	Co-invention of Writing and Reading	350
		11.1.3	Shallow (Transparent) and Deep (Opaque) Orthographies	
			Impact Reading Acquisition	352
	11.2	Neuro	nal Specialization and the Creation of Reading-Specific Areas	
		on the		352
			Visual Object Categories and the Visual Word Form Area (VWFA)	353
			Language-Specific Tuning of the VWFA	353
		11.2.3	Learning to Read "Creates" the VWFA	355
		11.2.4	1	356
	11.3		Interconnectivity and Literacy	357
		11.3.1	Interfacing the VWFA with the Rest of the Language System	358
		11.3.2		361
	11.4	11.3.3	Improved Reading Proficiency Involves a Dorsal-to-Ventral Shift	363
	11.4	Langua 11.4.1	age Influences Reading; Reading Influences Language The Importance of Both Quantity and Quality of Oral	363
		11.4.1		364
		11.4.2	Language Exposure Emergent Skills That Are Critical to the Acquisition of Reading	365
	11.5		bes and Sources of Poor Reading	367
	11.5	11.5.1	_	368
				369
		11.5.2	Developmental Dyslevia	507

xiv Contents

	Sumi	nary		372
	Revie	ew Ques	tions	373
	Furtl	ner Read	ling	373
	Refe	rences		373
2	Num	eracy		379
	12.1	Numbe	er Systems	380
			Number Sense	380
		12.1.2	Cultural Construction of Symbolic Mathematics	381
			Numerical Systems	382
	12.2		ymbolic Number	383
			Mechanisms Underlying Non-Symbolic Number Representation	383
			Evidence for Object Tracking	384
			Evidence for Approximate Number	384
			Origins of the Approximate Number System	385
	12.3		lic Number	386
		•	A Brief Digression into Language Acquisition and Attentional Focus	386
			Individuation and Counting	387
			Counting Helps Focus Children on Number Rather than	
			Other Attributes	388
	12.4	Relatio	onship between Non-Symbolic and Symbolic Number	389
		12.4.1	The Brain Basis for Number	390
		12.4.2	The Neuronal Code for Number	391
		12.4.3	Number Representations and Brain Networks	394
		12.4.4	How Numerical Symbols Acquire Their Meaning	396
		12.4.5	Stepping Stones to Mathematical Competency	399
	12.5	Arithm	netic	400
		12.5.1	The Arithmetic Network in Typically Developing Children	401
		12.5.2	Difficulties with Number	404
		12.5.3	Developmental Dyscalculia	405
		12.5.4	Individual Differences in the Arithmetic Network	407
	12.6	Math I	Education	407
		12.6.1	Math Intervention	408
		12.6.2	Effects of Math Intervention on the Developing Brain	408
	Sumi	nary		409
	Revie	ew Ques	tions	410
	Furtl	ner Read	ling	410
	Refe	rences		410
3	Moti	vated Be	ehavior and Self-Control	417
	13.1	Drivers	s of Behavior	417
		13.1.1	Approach, Avoidance, and Self-Control	418
		13.1.2	Insights from Patients	420

		Contents	XV
		12.1.2 DEC Injuries Inquered during Davidsement	423
	13.2	13.1.3 PFC Injuries Incurred during Development Self-Control	423
	13.2	13.2.1 The Protracted Neurodevelopment of Self-Control	424
		13.2.2 Measuring Self-Control	424
		13.2.3 Delay of Gratification	426
		13.2.4 Predicting Life Outcomes	420
	13.3	Neural Basis of Self-Control and Its Development	427
	13.3	-	428
		13.3.1 Self-Control in a Neutral Context: Inhibiting Motor Responses13.3.2 Neurodevelopment of Response Inhibition	429
	12.4	1 1	429
	13.4		422
		Resisting Temptation	432
		13.4.1 Approaches to Studying Hot Self-Control	432 433
		13.4.2 Neural Basis of Delay of Gratification	
		13.4.3 Reward-Based Decision-Making	435
	12.5	13.4.4 Reward Sensitivity in Adolescence	436
	13.5	E .	437
		13.5.1 The Transition to Adulthood	437
		13.5.2 Social Influences on Adolescent Decision-Making	437
	C	13.5.3 Positive and Negative Growth Trajectories	440
	Sumr	·	443
		ew Questions	444
		ner Reading	444
	Keiei	rences	445
14	Key T	hemes and Future Directions	449
	14.1	Overview	449
		14.1.1 The Developmental Process Is Probabilistic	449
		14.1.2 There Are No Genes "for" Psychological	
		and Behavioral Traits	450
		14.1.3 Variation in Neural Circuits Contributes to Individual Differences	451
	14.2	Future Directions in Theoretical Approaches	451
		14.2.1 Interactive Specialization as a Guiding Framework	451
		14.2.2 Making Theory Explicit	452
		14.2.3 Good Theory Forces Hard Questions	453
		14.2.4 Levels of Structure Inform Levels of Analysis	454
	14.3	Future Directions in Methodological Approaches	455
		14.3.1 Scope of Investigations	455
		14.3.2 The Importance of Formal Modeling	457
	14.4	Societal Relevance	459
	14.5	Public Health	460
		14.5.1 Public Health Mandates	460
		14.5.2 Pressing Public Health Issues	461

xvi Contents

14.6 Communicating the Science	463
14.6.1 DCN in the News	463
14.6.2 Advising Policymakers and Practitioners	464
14.6.3 Responsible Conduct and Dissemination of Res	earch 465
14.7 Wrapping Up	465
References	466
Index	470

Preface

How do brains change from infancy through adolescence? How are they shaped by the interplay between different genotypes and environmental input? How do these brain changes manifest as changes in behavior? Our goal with this book is to introduce students to the field of Developmental Cognitive Neuroscience (DCN), the scientific interface between biological studies of the brain and behavioral studies of human development. Researchers in DCN study brain development and the corresponding cognitive, social, and emotional changes that take place beginning prenatally and continuing through childhood and adolescence. We study how a child's environment and experiences shape their developing brain.

Neuroscientific discoveries have been crucial to our understanding of psychological processes and their underlying brain basis. Nowhere is this more evident than in the field of cognitive development, a discipline focused on the perceptual and conceptual changes that emerge in concert with a brain that is growing and changing. Over the past several decades, behavioral psychologists have found new and better ways to look "under the hood" to understand the processes supporting developmental change, and neuroscientists have expanded their focus to include structural and functional mechanisms that help characterize human growth and development. Together, these efforts have had considerable impact on the way research on human development is conducted, culminating most recently in the founding of the field of DCN.

The DCN approach to research integrates measures of neural development and concomitant changes in cognitive, social, and affective processes in both typical and atypical populations. Critical to the melding of disciplines has been the application of a variety of techniques and technologies, including electrophysiology and functional neuroimaging, to the behavioral paradigms typically used in human development research. Together with insights from animal models, patient populations, and psychopharmacological and genetic assays, these approaches are providing a wider variety of data to help characterize developmental change. This book summarizes where the field currently stands, providing a much-needed integration of information from various and diverse methodological approaches, populations, and theoretical positions.

Motivation

What do we have to offer in writing a textbook on DCN? First, we teach courses about this field at both the undergraduate and graduate levels. Second, our complementary research interests span many of the topics covered in this book, as well as the full pediatric age range from infancy through adolescence. One of us (Bortfeld) focuses on language learning from infancy through early childhood and examines experience-dependent neural plasticity in the auditory system.

xvii

xviii Preface

The other (Bunge) has studied executive functions, various forms of memory, reasoning, environmental influences on the developing brain, and applications to education. Third, both of us use techniques that range from the behavioral to neurophysiological: Bortfeld uses looking time techniques in conjunction with functional near-infrared spectroscopy; Bunge uses cognitive measures, eye-tracking, and structural and functional magnetic resonance imaging. Thus, our collective experience as researchers covers a broad age range and many of the developmental changes therein. We also can offer our experience in teaching these concepts to students at universities with very different student populations: three different University of California campuses (Berkeley, Davis, and Merced), Stony Brook University, Texas A&M, Brown, University of Connecticut, and Stanford. Our lives and our understanding of how to teach have been meaningfully changed by our interactions with the students at these schools. The irony is not lost on us that it is perhaps we who have learned the most from interactions with those who came to us for instruction.

Why did we write this book? In teaching, we have been hard pressed to find an up-to-date textbook that approaches the complex progression of brain changes that co-occur with the emergence of human abilities in an easily tractable way. Teaching a course on DCN requires a wide range of field-specific framing, including review of anatomical detail from developmental neuroscience, behavioral methods from developmental psychology, and technological innovations from cognitive neuroscience. After many years of culling and revising reading lists to cover those topics and address those needs, we realized that we ourselves would benefit from a coherent presentation of them all together and in one place – and we thought perhaps others would as well.

Our Approach

Our goal has been to characterize how the developing brain supports and interacts with the emergence of a diverse range of abilities. We believe that you can't begin to understand these complex capabilities without understanding the biology underlying them. Students often think of psychology in categories – cognitive, social, clinical – in large part because courses are designed to fit into specific psychological subdomains. When developmental psychology is the focus of a course, we have found that students assume biological details will not be part of the discussion. This bias is further reinforced by the superficial dichotomy of development as being influenced by nature *or* nurture, a tired framework that has stymied deeper understanding of human development. Our aim is to focus on and celebrate the interdependence of psychology and biology – of mind and brain.

For the most part, we cover research in humans from the vantage point of developmental psychology, cognitive neuroscience, and the intersection of these two fields. However, we do occasionally feature cellular and systems neuroscience research on laboratory animals that has provided important insights on a given topic. We also provide a high-level overview of genetics and epigenetics, but do not cover other areas of molecular neurobiology. As molecular, cellular, and systems neuroscience are large fields of research unto themselves, we cannot do them justice here. But in touching on these areas, we hope to spark students' curiosity about them.

To be clear, we also emphasize that understanding only the biology won't get us very far. That is, we believe that studying the biology of the brain is not an end in itself: DCN needs always to be informed and motivated by questions about actual behavior. Further, we don't

Preface xix

think of behavior as being divided into the biological and the cognitive/social/emotional. The complex manifestation of the latter comes about through the mechanisms and developmental trajectories of the former. These aspects of behavior are intertwined in complex, interdependent ways. Our aim here is to explore how this comes to be.

We operate on the premise that a firm grasp of cognitive and brain changes in typically developing children is essential for understanding what goes awry in neurodevelopmental disorders that affect social, motoric, linguistic, and/or cognitive development. Most importantly, we think this understanding is essential for predicting the onset of a disorder in an individual child and providing insights relevant for early detection and treatment. Because there is so much ground to cover with regards to typical development, we cannot provide comprehensive coverage of these disorders, of which there are many. However, we do highlight several disorders in association with specific topics. When we teach this course, we encourage students who are interested in clinical psychology, neuropsychology, or medicine to pick a specific disorder to investigate for a class presentation or final paper.

The field of DCN is increasingly of interest not only in the clinical realm, but also in fields as far-flung as public health, education, the law, and more. Every day, policymakers, practitioners, and the public seek out information about the developing brain, and news headlines abound. We believe that a solid foundation in DCN is important for parsing these headlines, and for making informed decisions at both the personal and societal levels. We endeavor to provide a balanced discussion of a few hot-button issues and list many others in the concluding chapter. In our classes, we invite students who are interested in the broader societal implications of DCN to pick one of the issues highlighted in Chapter 14 for a presentation or final paper.

Organization

The book includes fourteen chapters, representing the arc of information necessary to understanding how someone progresses from a tiny cluster of cells to a sentient being. Thus, we devote the first four chapters to laying the groundwork for emerging human abilities. Chapter 2 provides an overview of the core methods used to examine development, including functional neuroimaging (fMRI/MEG), electrophysiology (EEG/ERP), functional near-infrared spectroscopy (fNIRS), and transcranial magnetic stimulation, as well as other basic neuroscience approaches based on cellular and animal models. Chapter 3 serves as a primer on genetics and epigenetics, while Chapter 4 summarizes the biological processes that underpin the emergence of a human from conception to birth and beyond, while also providing cursory orientation to the major divisions of the brain, and an introduction to the different cell types. Chapter 5 focuses on brain plasticity, providing a more nuanced examination of how nature and nurture interact continually to influence development. Chapters 6-8 provide foundational information about the emergence of basic processes – perception, attention, social awareness, and early language acquisition – that are necessary for a person to function in the world. Chapters 9–10 then focus on various forms of memory, and how we leverage memory in the service of goal-directed behavior, while Chapters 11-12 focus on the culturally constructed, educationally relevant skills of literacy and numeracy. Chapter 13 examines key drivers of behavior and the capacity for self-control.

xx Preface

Finally, we conclude with a chapter looking towards the future, anticipating new directions, including methods, in which the field is moving. This textbook is not intended to be a comprehensive treatment of all of DCN. For example, it does not provide extensive coverage of motor development and learning, social cognition in late childhood and adolescence, or computational research, all of which are exciting areas of research. Nonetheless, this book introduces students to DCN and a wide array of topics of active investigation in the field.

Pedagogical Features

Our approach is to tell a story about how research on a particular subtopic arrived at where it currently is. This necessarily includes having to make difficult decisions about what to include and what to leave out to ensure the story is a coherent one. We think we have achieved this, and have added several features to help students extract the bones of each story. These include:

- · Learning objectives
- Chapter summaries
- Review questions
- Further readings, including influential empirical papers and reviews

We have also included in each chapter a "Scientist Spotlight": there are excerpts from an interview with a researcher whose focus of study relates to one of the topics under discussion in the text. The purpose of these spotlights is to personalize the science by providing the origin story of leading figures in the field. Each chapter also contains a box that provides a deeper dive into the details of an issue that is relevant to the main text.

Full citations for all references mentioned in the text are provided at the end of each chapter. Key terms are bolded and defined in each chapter, with more detailed definitions provided in an accompanying glossary; additional terms are italicized and defined in the text. Finally, we provide online resources to support instructors and students, including lecture slides and a test bank of additional questions.

Teaching with This Book

This book is intended for advanced undergraduates and early-stage graduate students who want to get into the meat of research on the brain basis for developmental change in behavior. It is ideally suited for a semester-long course (usually 14–16 weeks), but specific chapters can be selected in support of shorter course terms.

The book presupposes a high school-level biology background and an introductory psychology course. Before embarking on this journey through DCN, students should have a rough sense of the different parts of the brain and their functions. Instructors whose students have no background in neuroscience are encouraged to give an introductory lecture on gross neuroanatomy. However, students need not know neuroanatomy in depth from the outset of the course, as we introduce each brain region or network as it becomes relevant to a particular topic.

Preface xxi

We have presented our interpretation of the story that has emerged from the body of DCN literature. We encourage instructors to add to that story with their own data points and interpretations, their own experiences, and when possible, current headlines that address the issues raised by recent findings. We include references to the original peer-reviewed scientific articles from which the data were sourced so that instructors can pursue more detailed information about any given study.

The book is designed to stand alone; a single chapter is sufficiently rich to serve as the assigned reading for one week's worth of lectures – or even two weeks, depending on the desired depth of coverage. For those wishing to take a deep dive on select topics rather than covering the entire textbook, each chapter lists empirical papers that can serve as the basis for discussion sections or student presentations. In whatever way an instructor approaches this course, we hope the excitement we experience as researchers in the field comes through in our writing.

Ultimately, our goal is for the book to help students think deeply and critically about human development, so that they can evaluate studies and formulate questions that are addressable through the methods and techniques of DCN. The mind–brain relationship has been the focus of inquiry for as long as humans have been thinking about thinking, and we happen to be passionate about understanding how the developing brain gives rise to the developing mind. Our hope is that we have adequately conveyed this passion, that it helps ignite similar excitement in students, and that it proves sufficiently intriguing to motivate many to enter this growing and continually developing field and join us in our search for the brain basis of human behavior.

Acknowledgments

We thank the many people who contributed to this book and associated materials. Jesse Gomez and Vaidehi Natu, Stephen Lomber, Tomás Ryan, and Ted Satterthwaite contributed text boxes providing a deeper dive into specific topics. Daniel Levitin provided extensive feedback on the full draft of the book, and unnamed experts solicited by Cambridge University Press each reviewed several chapters. Trainees in our labs and classes provided detailed input on specific chapters, along with helpful information and references; these include Haider Ali Bhatti, Monica Ellwood-Lowe, Aedan Enriquez, Lindsay Fleming, Elena Galeano Keiner, Leana King, Pradyumna Lanka, Elena Leib, Willa Voorhies, and the students in Heather's undergraduate course. Professor Janet Werker at the University of British Columbia provided extensive feedback on many chapters, incorporating comments from students in a graduate course: Erica Dharmawan, Denitza Dramkin, Raechel Drew, Jessica Flores de la Parra, Faith Jabs, Vivian Qi, Eloise West, and Francis Yuen. Additionally, Marta Bunge provided highlevel input on several chapters. Graduate students Vinitha Rangarajan and Enitan Marcelle, along with research assistants Marisol Duran, Aedan Enriquez, and Dorsa Javaheri, assisted with figures and figure permissions. Mark Johnson, Michael Meaney, Damien Fair, Terry Jernigan, Takao Hensch, Janet Werker, Sally Rogers, Ghislaine Dehaine-Lambertz, Simona Ghetti, Beatriz Luna, Fumiko Hoeft, Daniel Ansari, and Eveline Crone participated in interviews for the scientist spotlight in each chapter, and Madison Lacanlale and Jaquelyn Borcea edited the videos of the interviews for online distribution.

xxii