Index

abrikosov vortex lattice, 130
AdS/CFT, 197
anisotropic expansion, 86
anti-ferromagnetic spin order, 264
atom-dimer resonance, 65
attractive polaron, 165

band gap, 205
band index, 204
band mapping, 209
band width, 210
BCS limit, 183
BCS theory, 175
BCS-BEC crossover, 185
BEC limit, 183
Beliaev damping, 94
Berezinskii–Kosterlitz–Thouless transition, 126
Bethe–Ansatz solution, 100
Bloch oscillation, 210
Bloch wave function, 204
Bogoliubov theory, 88
Bose pair condensate, 75
Bose–Einstein condensation, 74
Bragg spectroscopy, 96
breathing mode, 86
bulk-edge correspondence, 230
Chandrasekhar–Clogston limit, 181
charge density wave, 270
charge gap, 205
Chern number, 123
clock states, 9
closed channel, 49
compressional mode, 86
condensate fraction, 77
condensate wave function, 77
confinement induced resonance, 58
contact, 179
continuity equation, 80
continuous scaling symmetry, 62
cooper problem, 173
critical exponent, 250
d-wave pairing, 183, 272
D1, D2 lines, 7
dark soliton, 120
dark state, 27
diffusion equation, 80
dipole mode, 85
Dirac monopole, 144
Dirac point, 215
direct band gap, 207
discrete scaling symmetry, 63
dynamic structure factor, 97
dynamical critical exponent, 250
dynamical gauge field, 240
effective Floquet Hamiltonian, 238
effective mass, 162
effective range, 33
Efimov effect, 63
Efimovian expansion, 64
eigenstate thermalization hypothesis, 275
emergent symmetry, 256
Fermi liquid parameters, 162
Fermi polaron, 163
Fermi surface, 161
Fermi surface nesting (see also 7.5), 245, 265
Fermi surface nesting (see also 8.2), 265
Fermi’s pseudo-potential, 41
ferromagnetic state, 136
Feshbach resonance, 49
first Brillouin zone, 204
Floquet theory, 236
free particle limit, 204
Goldstone mode, 81
Gross–Pitaevskii equation, 79
Gutzwiller projection, 273
Haldane model, 224
Index

half vortex, 141
Hanbury–Brown–Twiss effect, 113
healing length, 90
Higgs mechanism, 257
Higgs mode, 257
high temperature expansion, 65
hole excitation (see also 5.1), 155, 249
hole excitation (See also 8.1), 155, 249
holographic duality, 197
homotopy group, 122
Hopf map, 123, 231
Hubbard model, 211
Hund’s rule, 5
hydrodynamic equation, 79
indirect band gap, 207
infrared divergence (see also Sec. 3.4), 43, 99
itinerant ferromagnetism, 272
Josephson effect, 105
Kondo physics, 48
Landau criterion, 83
Landau damping, 94
Landau Fermi liquid, 161
Langevin force, 243
Laser cooling, 20
Lee–Huang–Yang correction, 90
Levinson’s theorem, 37
light-induced Zeeman energy, 21
linking number, 231
local density approximation, 84
LS coupling, 6
macroscopic quantum tunneling, 115
magnetic trapping, 12
Majorana stellar representation, 132
Majorana transition, 14
many-body localizations, 276
maximally localized Wannier wave function, 206
Mermin-Ho vortex, 140
micromotion term, 237
mixed dimension, 61
momentum mapping, 208
monopole, 141
Mott insulator (see also 8.2), 249, 266
narrow resonance, 54
Newton equation, 79
Nozières–Schmitt-Rink approach, 192
off-diagonal long-range order, 75
one-dimensional scattering length, 59
open channel, 49
optical clock, 9
optical Feshbach resonance, 56
optical lattices, 19
optical trap, 19
orbital Feshbach resonance, 58
order by disorder, 92
pairing symmetry, 182
particle excitation (see also 5.1), 155, 249
particle excitation (see also 8.1), 155, 249
particle-hole symmetric point, 249
particle-hole transformation, 262
Peierls substitution, 235
phase shift, 33
phase slip, 120
polar condensate, 137
quadratic Zeeman effect, 11
quadrupole mode, 85
quantized conductance, 162
quantum anomalous Hall effect, 230
quantum defect, 5
quantum depletion, 90
quantum measurement, 110
quantum phase transition (see also Sec. 7.5), 243, 249
quantum point contact, 159
quantum simulation, 212
quantum thermalization, 274
quasi-energy, 236
quasi-momentum, 204
quasi-particle, 90
quasi-particle lifetime, 94
quench dynamics, 231
radio-frequency spectroscopy, 168
Raman spectroscopy, 168
Rényi entropy, 280
renormalizable contact potential, 41
renormalization, 43
repulsive polaron, 165
roton, 151
scalar light shift, 18
scale invariant quantum gases, 102
scattering amplitude, 37
scattering cross-section, 37
scattering length, 33
scattering resonance, 37
scattering volume, 34
Schrödinger Cat state, 115
Schwinger–Dyson equation, 42
screening effect, 5
self-consistent mean-field theory, 175
self-energy, 163
self-trapping, 106
semimetal, 217
shallow bound state, 36
shape resonance, 54

© in this web service Cambridge University Press
www.cambridge.org
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>singlet pair condensate</td>
<td>137</td>
</tr>
<tr>
<td>skyrmion</td>
<td>143</td>
</tr>
<tr>
<td>soliton mass</td>
<td>121</td>
</tr>
<tr>
<td>sound velocity</td>
<td>80</td>
</tr>
<tr>
<td>spin density wave</td>
<td>264</td>
</tr>
<tr>
<td>spin exchanging scattering</td>
<td>48</td>
</tr>
<tr>
<td>spin healing length</td>
<td>140</td>
</tr>
<tr>
<td>spin vortex</td>
<td>139</td>
</tr>
<tr>
<td>stimulated Raman adiabatic passage (STIRAP)</td>
<td>26</td>
</tr>
<tr>
<td>stripe phase</td>
<td>148</td>
</tr>
<tr>
<td>SU(N) symmetric interaction</td>
<td>45</td>
</tr>
<tr>
<td>Su–Schrieffer–Heeger model</td>
<td>221</td>
</tr>
<tr>
<td>super-exchange</td>
<td>266</td>
</tr>
<tr>
<td>superfluid critical velocity</td>
<td>82</td>
</tr>
<tr>
<td>superfluidity</td>
<td>82</td>
</tr>
<tr>
<td>superradiant transition</td>
<td>243</td>
</tr>
<tr>
<td>surface mode</td>
<td>85</td>
</tr>
<tr>
<td>symmetry breaking</td>
<td>114</td>
</tr>
<tr>
<td>symmetry protected topological phases</td>
<td>223</td>
</tr>
<tr>
<td>symmetry protection</td>
<td>220</td>
</tr>
<tr>
<td>synthetic gauge field</td>
<td>12</td>
</tr>
<tr>
<td>synthetic magnetic field</td>
<td>14</td>
</tr>
<tr>
<td>synthetic spin-orbit coupling</td>
<td>22</td>
</tr>
<tr>
<td>term-diagram</td>
<td>4</td>
</tr>
<tr>
<td>Thomas–Fermi distribution</td>
<td>84</td>
</tr>
<tr>
<td>Thouless criterion</td>
<td>191</td>
</tr>
<tr>
<td>three-atom resonance</td>
<td>65</td>
</tr>
<tr>
<td>time-of-flight</td>
<td>76</td>
</tr>
<tr>
<td>Tonks–Girardeau gas</td>
<td>103</td>
</tr>
<tr>
<td>topological band insulator</td>
<td>229</td>
</tr>
<tr>
<td>topological defect</td>
<td>126</td>
</tr>
<tr>
<td>topological phase transition</td>
<td>127</td>
</tr>
<tr>
<td>two-channel model</td>
<td>54</td>
</tr>
<tr>
<td>two-fluid hydrodynamics</td>
<td>87</td>
</tr>
<tr>
<td>two-terminal transport</td>
<td>158</td>
</tr>
<tr>
<td>ultraviolet divergence</td>
<td>42</td>
</tr>
<tr>
<td>universality</td>
<td>34</td>
</tr>
<tr>
<td>upper branch</td>
<td>68</td>
</tr>
<tr>
<td>vacuum energy</td>
<td>91</td>
</tr>
<tr>
<td>vacuum polarization</td>
<td>93</td>
</tr>
<tr>
<td>Van Hover singularity</td>
<td>208</td>
</tr>
<tr>
<td>vector light shift</td>
<td>20</td>
</tr>
<tr>
<td>virial coefficient</td>
<td>66</td>
</tr>
<tr>
<td>volume law of entanglement entropy</td>
<td>276</td>
</tr>
<tr>
<td>Wannier wave function</td>
<td>206</td>
</tr>
<tr>
<td>wave equation</td>
<td>80</td>
</tr>
<tr>
<td>Weyl point</td>
<td>219</td>
</tr>
<tr>
<td>wide resonance</td>
<td>54</td>
</tr>
<tr>
<td>winding number</td>
<td>123</td>
</tr>
<tr>
<td>zero-energy edge mode</td>
<td>230</td>
</tr>
</tbody>
</table>