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1 A Single Atom

Learning Objectives

• Discuss the Coulomb interaction, the spin-orbit coupling, and the hyperfine coupling as

the three effects that determine atomic structure.

• Highlight the importance of the separation of energy scales of these three effects.

• Introduce different atomic structures of alkali-metal, alkaline-earth-metal, and magnetic

atoms.

• Introduce the long-lived excited states in alkaline-earth atoms, and their applications,

such as to atomic optical clocks.

• Discuss the Zeeman structure of atoms in a magnetic field.

• Discuss the idea of magnetic trapping, which can naturally lead to the emergence of a

synthetic gauge field.

• Introduce the scalar light shift and its applications, such as laser trapping, optical lattices,

and laser cooling.

• Introduce the vector light shift and its applications, such as the light-induced Zeeman

field and synthetic spin-orbit coupling.

• Discuss the synthetic spin-orbit coupling and various kinds of gauge fields generated by

the vector light shift.

• Introduce the basic idea of the stimulated Raman adiabatic passage.

1.1 Electronic Structure

Let us first consider a general Hamiltonian of Z electrons moving around a nucleus that

contains the Coulomb interaction, the spin-orbit coupling, and the hyperfine coupling.

These are the three effects that determine the electronic structure of an atom. Here we

should emphasize the important role of the separation of energy scales; that is to say, the

typical energy scales of these three terms are quite different. Thanks to the separation of

energy scales, we can analyze them one by one, which enables us to obtain a clear picture

of the electron structure.

Coulomb Interaction between Electron and Nucleus. Each electron moves around the

nucleus with an attractive Coulomb interaction between the electron and the nucleus, which

is described by
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4 A Single Atom

Ĥ0 =

Z
∑

i=1

(

−
�

2∇2
i

2m∗
+ Vei(ri)

)

, (1.1)

where i = 1, . . . , Z labels the electrons; ri labels the coordinate of electron centering at

the nucleus; m∗ = mM/(m + M) is the reduced mass, where m is the electron mass and

M is the nucleus mass; Vei(r) = −Zκ/r is the Coulomb potentials between the electron

and the nucleus, where κ = e2/(4πǫ0); e is the electron charge; and ǫ0 is the vacuum

permittivity. The eigenstates are characterized by three quantum numbers (n, l, m). Usually

for the spherical symmetric potential, because of the SO(3) rotational symmetry, the energy

spectrum only depends on n and l and does not depend on m. However, for the 1/r Coulomb

potential, such as with a hydrogen atom, the eigenspectrum is

E = −
m∗Z2κ2

2�2n2
, (1.2)

which only depends on the principal quantum number n and is independent of angular

momentum quantum number l; l can take integer values from 0 to n − 1. This extra degen-

eracy is a consequence of 1/r potential, which leads to an SO(4) symmetry larger than the

three-dimensional rotational symmetry [102]. The separation of these energy levels is of

the order of electron volts (∼ 1014Hz) because it originates from the Coulomb interaction.

The energy levels, usually named as the term-diagrams, are schematized in Figure 1.1,

where 1, 2, 3, . . . label the principal quantum number n and s, p, d, . . . represent the angu-

lar momentum quantum number l. The term-diagram for a hydrogen atom is shown in

Figure 1.1(a).

Coulomb Interaction between Electrons. The repulsive Coulomb interaction between

electrons is given by

V̂c =
∑

i<j

Vee(ri − rj), (1.3)

1s 1s

2s 2p 2s
2p

3s 3p 3d 3s
3p 3d

0 0

(a) (b)

�Figure 1.1 Schematic of the term-diagram: (a) the hydrogen atomwithout screening effect and (b) an alkali-metal atom with

screening effect. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.
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5 Electronic Structure

where Vee(r) = κ/r. Here we discuss a couple of physical consequences of this term.

First, the inner electrons of the fully filled levels screen the positive Ze charge of the

nucleus, and thus, the valence electron experiences a reduced Coulomb potential. When

the electronic orbit of the outermost electron is far from the nucleus, approximately, it

experiences a fully screened field of all the rest of the Z − 1 electrons. That is to say,

for large enough r, the effective attraction between the electron and the nucleus becomes

a Coulomb potential with effective charge unity, that is, −κ/r. The closer this electron

approaches toward the nucleus, the more it experiences the unscreened nuclear potential

with charge Ze. The attraction between the electron and the nucleus recovers −Zκ/r for

sufficiently small r. Therefore the effective potential seen by the valance electron is no

longer proportional to 1/r, and hence, the enlarged SO(4) symmetry no longer exists. Con-

sequently, the eigenstates with the same n but different l are no longer degenerate, and the

energy level becomes

E = −
m∗Z2κ2

2�2(n − δ(n, l))2
, (1.4)

where δ(n, l) is a function depending on n and l and is also called the “quantum defect”

[157]. The term-diagram with the screening effect is schematized in Figure 1.1(b). Nor-

mally, the energy level with larger l becomes higher. This energy splitting is also of the

order of electron volts, because it also originates from the Coulomb interaction.

Second, let us consider two electrons in two orbits, say, ψ1(r) and ψ2(r). Because the

total wave function of two electrons has to be antisymmetric, and if these two electrons

form a spin singlet, the wave function in the spin space is antisymmetric, and their spatial

wave function has to be symmetric, that is, ψ1(r1)ψ2(r2) + ψ1(r2)ψ2(r1). If these two

electrons form a spin triplet, the wave function in the spin space is symmetric, and their

spatial wave function should be antisymmetric, that is, ψ1(r1)ψ2(r2) − ψ1(r2)ψ2( r1). In

the latter case, the wave function vanishes when two electrons come close enough, which

reduces the repulsive interaction energy. Thus, the energies of the triplet states are lower

than the energy of the singlet state. In other words, the Coulomb repulsion favors the total

spin S of electrons to be maximized. This argument can be generalized to cases with more

than two electrons and to cases with more than two quantum states, which gives the early

day explanation of the first Hund’s rule.1 Also, for a given S, the short-range repulsion

is minimized when the total angular momentum L is maximized, which gives the second

Hund’s rule. The characteristic energy scale of the Hund’s rules is also of the order of

electron volts.

The Spin-Orbit and Hyperfine Couplings. The Hamiltonian for the spin-orbit coupling

is given by

Ĥso =
∑

i

αi
fŜi · L̂i, (1.5)

1 There are more advanced discussions of the origin of the first Hund’s rule in later quantum chemistry

calculations that we will not discuss in detail here.
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6 A Single Atom

and it describes the coupling between the electronic spin Ŝi and its orbital angular momen-

tum L̂i with strength αi
f

2, giving rise to the fine structure. The origin of the spin-orbit

coupling can be intuitively understood as follows. Sitting in the rest frame of an electron,

the nucleus moves around the electron. Because the nucleus is charged, the circulating

motion of the nucleus gives rise to an electric current, and the strength of the current is

proportional to the angular momentum of the relative motion between the electron and the

nucleus. The circulating current further induces a magnetic field, which acts on the spin of

electrons. This leads to the spin-orbit coupling given by Eq. 1.5.

As one can see from this picture, because this process involves the magnetic effect

induced by the electric current, it is naturally weaker than the Coulomb interaction, because

the latter is purely electronic. In fact, the characteristic energy scale of the spin-orbit cou-

pling is typically of the order of 10−3eV (∼ 1011Hz), and in many cases it is much weaker

than the Hund’s rule coupling originating from the Coulomb interaction. Originally, this

spin-orbit coupling is between the spin and orbital angular momentum of each individual

electron; however, because the Hund’s rule coupling locks the electron spins of all valance

electrons to an eigenstate of the total electron spin Ŝ, and locks the angular momentum of

all valance electrons to an eigenstate of the total angular momentum L̂, it is more conve-

nient to express the leading order effect of the spin-orbit coupling in terms of Ŝ and L̂ as

αfŜ · L̂ + · · · . Here the first term represents the coupling between Ŝ and L̂ with strength

αf, which is called the LS coupling. The residual terms represented by · · · denote the dif-

ference between the actual coupling (Eq. 1.5) and the LS coupling term. Because S and L

are not really good quantum numbers for Eq. 1.5, these residual terms compete with the

Hund’s rule and can change the quantum number S and L. Nevertheless, Ĵ = Ŝ+L̂ =
∑

i Ĵi

still commutes with this coupling.

The hyperfine interaction couples the electronic degrees of freedom Ŝ and L̂ to the

nucleus spin Î. In general, Ŝ and L̂ couple to Î differently. Nevertheless, the character-

istic energy scale for the hyperfine coupling is of the order of 10−6eV (∼ 108–109Hz),

which is much smaller compared with the spin-orbit coupling. This is because the nuclear

magneton is much smaller than the Bohr magneton. Since the LS coupling already locks Ŝ

and L̂ to an eigenstate of Ĵ, we express the leading order effect of the hyperfine coupling

in terms of Ĵ and Î as αhfĴ · Î + · · · , where αhf is the strength of this coupling. This gives

rise to the hyperfine structure. Only with the first term, J is still a good quantum number,

but the residual term represented by · · · can change the quantum number J, which is due

to Ŝ and L̂ coupled to Î differently.

Zoo of Ultracold Atoms. So far, three classes of atoms have been cooled to quantum

degeneracy in cold atom experiments. They are (1) alkali-metal atoms, including hydro-

gen (H), lithium (Li), sodium (Na), potassium (K), rubidium (Rb), and cesium (Cs); (2)

alkaline-earth-metal (-like) atoms, including strontium (Sr), calcium (Ca), and ytterbium

(Yb). In the periodic table, ytterbium does not belong to the alkaline-earth-metals, but

its outer electronic structure is the same as alkaline-earth-metal atoms; and (3) atoms with

large electronic magnetic moments, which are called “magnetic atoms” here. These include

chromium (Cr), dysprosium (Dy), and erbium (Er). We also anticipate that more atomic

2 In general, αi
f

should also depend on spatial position. Here we ignore this dependence for simplicity.
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7 Electronic Structure

Table 1.1 The electronic structure and the nuclear spin of the alkali-metal atoms used
in current experiments

Atom Valance electron Label 2S+1LJ Nuclear spin I

Li 2s1 2S 1
2

7Li (I = 3/2, B); 6Li (I = 1, F)

Na 3s1 2S 1
2

23Na (I = 3/2, B)

K 4s1 2S 1
2

40K (I = 4, F);

39K (I = 3/2, B); 41K (I = 3/2, B)

Rb 5s1 2S 1
2

85Rb (I = 5/2, B); 87Rb (I = 3/2, B)

Cs 6s1 2S 1
2

133Cs (I = 7/2, B)

Note: F denotes fermion, and B denotes boson. Here the symbol 2S+1LJ labels the electronic

structure of each atom.

species can be cooled to quantum degeneracy in the future. Here we will discuss the elec-

tronic structure and the spin structure at zero magnetic field of these three classes based on

the aforementioned terms.

Alkali-Metal Atoms. So far, all atomic species in Table 1.1 have been cooled to quantum

degeneracy, among which 87Rb and 23Na are the most-studied ultracold bosonic isotopes

and 40K and 6Li are the most-studied fermionic isotopes. Following are a few key points

about this class of atoms:

• In the ground state, since there is only one electron in the s-orbital, S = 1/2, L = 0, and

J = 1/2. The ground state is always labeled by 2S1/2. There is no spin-orbit coupling in

the ground state, and the atomic spin structure is determined by the hyperfine coupling.

The hyperfine spin is defined as F̂ = Î + Ĵ, and F is a good quantum number for an

alkali-metal atom at the zero magnetic field. For instance, for 87Rb, I = 3/2, so the total

F can be either 1 or 2. At zero magnetic field, the energy splitting between F = 1 states

and F = 2 states is a few times 109Hz.

• For the first excited state, the valance electron is the p-orbital, and thus L = 1. Due

to the LS coupling, the total J can be either 1/2 or 3/2. Thus the excited states are

split into 2P 3
2

and 2P 1
2
, as shown in Figure 1.2(a). Historically, this splitting was dis-

covered in the absorption spectra of lights due to sodium atoms, and they are named

as D1 and D2 lines. Using sodium as an example, this fine splitting is 2.1 × 10−3eV

(≃ 5 × 1011Hz), and the splitting between the ground state 2S 1
2

and these two states is

about 2.1eV (≃ 5 × 1014Hz). Because the fine-structure splitting is much smaller com-

pared with the excitation energy, normally both 2P 3
2

and 2P 1
2

should participate in the

optical transition, which are key processes for trapping and manipulating alkali-metal

atoms, as we shall discuss in Section 1.3 in detail. In addition, 2P 3
2

and 2P 1
2

are further

split by the hyperfine coupling, and the hyperfine splitting is even smaller compared with

the fine-structure splitting.

Alkaline-Earth-Metal (-Like) Atoms. Table 1.2 contains the alkaline-earth-metal atoms

(Ca and Sr) and alkaline-earth-metal-like atom (Yb) that have been cooled to quantum
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8 A Single Atom

Table 1.2 The electronic structure and the nuclear spin of alkaline-earth-metal (-like) atoms
used in current experiments

Atom Valance electron Label 2S+1LJ Nuclear spin I

Yb 4f 146s2 1S0
174Yb (I = 0, B);
171Yb (I = 1/2, F); 173Yb (I = 5/2, F)

Ca 4s2 1S0
40Ca (I = 0, B)

Sr 5s2 1S0
84Sr (I = 0,B); 87Sr (I = 9/2, F)

Note: F denotes fermion, and B denotes boson.

�Figure 1.2 Schematic of the electronic structure: (a) an alkali-metal atom and (b) an alkaline-earth-metal atom. The dashed line

in (a) denotes the excitation energy, and the dashed lines in (b) denote that these states are coupled either by the

spin-orbit coupling (SO) or by the hyperfine coupling (HF) process. A color version of this figure can be found in the

resources tab for this book at cambridge.org/zhai.

degeneracy. Alkaline-earth-metal atoms have several unique properties compared with the

alkali-metal atoms:

• For the ground state, two electrons occupy the s-orbital, and therefore, the total electron

spin S = 0 and the angular momentum L = 0. All bosonic isotopes of alkaline-earth-

metal atoms have zero nuclear spin, and the fermionic isotopes have nonzero nuclear

spin I, which can be very large. However, because of J = 0, and consequently, the

absence of the hyperfine coupling, the nuclear spin is decoupled from the electronic spin

degree of freedom. Therefore, the nuclear spin nearly does not participate in two-body

interactions, and the interaction possesses an SU(N) symmetry with large-N [193]. We

will discuss this in Section 2.3.

• For the first excited states, one electron still occupies the s-orbital, but the other electron

is excited to the p-orbital. Thus, these states have L = 1. The electronic structure of

these excited states is shown in Figure 1.2(b). First of all, because of the Hund’s rule,

the Coulomb energies for the S = 1 states (3PJ) are lower than that for the S = 0 state
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9 Electronic Structure

(1P1). Second, due to the LS coupling, all states within the S = 1 manifold split into

J = 0, 1, and 2, denoted by 3P0, 3P1,3P2, respectively.

• As we will see in Section 1.3, because the optical transition is dominated by the dipole

transition, and the dipole transition does not change the electronic spin quantum number

S, the direct coupling between these excited states with S = 1 (3PJ) and the ground state

with S = 0 is forbidden because of different quantum number S. That is to say, at the

leading order, the dipole transition can only couple the ground state to the S = 0 excited

state (1P1) and cannot couple the ground state to the S = 1 manifold (3PJ).

• As we have mentioned above, the spin-orbit coupling term does not conserve the quan-

tum number S and L, and it can mix two states as long as they have the same J. Thus,

among the three states with S = 1, 3P1 states can be coupled to 1P1 states by the spin-

orbit coupling. Through this coupling, there exists a small but finite dipole transition

matrix element between the 3P1 states and the ground state. This gives rise to a lifetime

for 3P1 states of about a few hundred nanoseconds. And for 3P0 and 3P2, because their

quantum numbers J are different from that of 1P1, they cannot be coupled to 1P1 by the

spin-orbit coupling term.

• For fermionic isotopes, the coupling between 3P0 or 3P2 and 1P1 can be induced by the

hyperfine coupling. As we have discussed above, after including the hyperfine coupling,

J is also not a good quantum number. However, the coupling mediated by the hyperfine

coupling is much weaker, and hence, the lifetimes of 3P0 and 3P2 states are much longer

than for 3P1 states, and the lifetime can be many seconds. These long-lived electronic

excited states can be used as an important tool for precision measurement. On one hand,

the spontaneous emission rates of these states are so small, and on the other hand, the

coupling is not completely forbidden because of these residual couplings. Taking advan-

tage of these properties, the transition between 3P0 and 1S0 induced by laser coupling

can be used for the purpose of realizing the atomic optical clock. Therefore, these states

are also called the “clock state.” The atomic optical clock has reached an accuracy of

10−19s nowadays, and it is the most accurate clock we have now [25]. If one were to

start to run such a clock from the beginning of the universe until now, this clock would

be expected neither to gain nor to lose even one second. Such a clock can now be used

to test fundamental physics [92].

• For bosonic isotopes, due to the absence of the nuclear spin, there is absolutely no one-

photon dipole transition for 3P0 and 3P2. In this case, the coupling to ground state has

to be induced by higher-order processes. The lifetime of these two states can be many

years long, and for all practical purposes, these states can be viewed as not decayed.

Magnetic Atoms. Table 1.3 contains three atoms whose total angular momentum of elec-

tron J is very large. For chromium, five d-orbitals and one s-orbital are all half-filled, and

thus all six electrons are spin polarized because of the first Hund’s rule, which gives S = 3

and L = 0. Dysprosium and erbium are open-shell lanthanide atoms. For dysprosium, 7

f -orbitals are filled by 10 electrons, and thus there are 4 unpaired electrons. Because of

the first Hund’s rule, these four unpaired electrons are spin polarized, which gives rise to

a total electronic spin S = 2. And because of the second Hund’s rule, these four unpaired

electrons give maximized angular momentum L = 6. Similarly, for erbium, 7 f -orbitals
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10 A Single Atom

Table 1.3 The atomic structure of high-spin magnetic atoms like Cr and lanthanide Dy and Er

Atom Valance electron Label 2S+1LJ Nuclear spin I

Cr 3d54s1 7S3
52Cr (I = 0, B); 53Cr (I = 3/2, F)

Dy 4f 106s2 5I8
162Dy (I = 0, B); 163Dy (I = 5/2, F)

Er 4f 126s2 3H6
168Er (I = 0,B)

Note: F denotes fermion, and B denotes boson.

are filled by 12 electrons, and thus there are 2 unpaired electrons, which gives S = 1 and

a maximized angular momentum L = 5. Furthermore, it turns out that for both Dy and Er,

the spin-orbit coupling favors a maximum J, that is, J = 8 for dysprosium and J = 6 for

erbium. The atomic structures of these atoms also have strong effects on the interaction

between these atoms:

• In the presence of a finite magnetic field, J can be easily polarized, which results in a

magnetic moment d = 6μB for chromium, d = 10μB for dysprosium, and d = 7μB for

erbium. Therefore, the magnetic moment is about one order of magnitude larger than

that of the alkali-metal atoms, and hence the magnetic dipole interaction between two

atoms is two orders of magnitude larger.

• In the presence of a finite magnetic field, because the angular momentum L is nonzero

for dysprosium and erbium, the electron cloud is anisotropic, so that the short-range Van

der Waals potential is also anisotropic. This effect does not exist in chromium, whose

angular momentum is zero.

• In the limit of a vanishing magnetic field, J becomes depolarized, and the spin rotational

symmetry is restored. These atoms exhibit the aspects of high-spin particles, and their

interactions depend on spin, as we will discuss in Section 4.3.

1.2 Magnetic Structure

Now we consider the effect of a static magnetic field on the atomic structure. Because

electrons are charged, in principle, the electron motion inside an atom can also be affected

by the presence of magnetic field. However, this effect is too small compared with the

Coulomb interaction, such that we can safely ignore the change of electron orbital due

to the magnetic field. We only focus on the Zeeman effect acting on the electron spin S,

orbital angular momentum L, and nuclear spin I. The energy scale of the Zeeman splitting

is comparable with the hyperfine splitting for a typical magnetic field of hundreds of Gauss

in the laboratory.

Hence, here we consider an atom as a point neural particle carrying S, L, and I. Now

let us focus on the ground state of alkali-metal atoms. For example, for 87Rb atoms with

S = 1/2, L = 0, and I = 3/2, the ground state spin structure is determined by

Ĥs = B(μBgSŜz + μNgI Îz) + αhf Ĵ · Î, (1.6)
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11 Magnetic Structure
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�Figure 1.3 Schematic of the Zeeman energy structure. Here we consider the electronic ground state of a 87Rb atomwith

J = 1/2 and I = 3/2.Fz labels the good quantum number of each state. A color version of this figure can be

found in the resources tab for this book at cambridge.org/zhai.

where μB and μN are the Bohr magneton and the nuclear magneton, respectively, and

μN ≪ μB. gS and gI are the Landé g-factors. Here we first consider the situation that the

magnetic field is spatially uniform and its direction is chosen as the ẑ direction. For this

Hamiltonian, Fz is a good quantum number, and its spectrum can be solved exactly. Here

we analyze the behavior in the small B and large B regimes, respectively. By smoothly

connecting the small B and large B regimes, one naturally obtains the qualitative feature

for the energy diagram, as shown in Figure 1.3

• In the small B-field regime, when BμBgs ≪ αhf, the hyperfine coupling dominates.

The hyperfine coupling splits the energy between states with F = 1 and the states with

F = 2. Within the three F = 1 states, or the five F = 2 states, the Zeeman field

simply creates a linear Zeeman energy and a quadratic Zeeman energy proportional to Fz

and F2
z , respectively. The reason that there exists a quadratic Zeeman effect is precisely

because the hyperfine spin contains both electronic spin and nuclear spin components,

and they couple to the external magnetic moment differently.

• In the large B-field regime, when BμBgS ≫ αhf, the Zeeman energy of electron spin

dominates. The energies of four states with Sz ≈ −1/2 decrease as B increases, and the

energies of the other four states with Sz ≈ 1/2 increase as B increases.

Magnetic Trap. In the presence of a magnetic field, the energies of some spin states

increase with an increasing magnetic field strength. That is to say, if an atom is prepared

in such a state, it can be trapped in the regime where the magnetic field strength has a local

minimum. Atoms in these states are called the “low-field seeking” atoms. The energies of

some other states decrease with an increasing magnetic field strength. These states can be

trapped in the regime where the magnetic field strength has a local maximum. Atoms in

these states are called the “high-field seeking” atoms. This is the basic idea of the magnetic
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