Earth History

Providing a new approach to Earth history, this engaging undergraduate textbook highlights key episodes in the history of our planet and uses them to explain the most important concepts in geology. Rather than presenting exhaustive descriptions of each period of geological time, this conceptual approach shows how geologists use multiple strands of evidence to build up an understanding of the geological past, focusing on exciting events like the extinction of the dinosaurs and the formation of the Grand Canyon and the Himalaya. Beginning with an introduction to geology, tectonics, and the origin of the universe, subsequent chapters chronicle defining moments in Earth history in an accessible narrative style. Each chapter draws on a variety of sub-disciplines, including stratigraphy, paleontology, petrology, geochemistry, and geophysics, to provide students who have little or no previous knowledge of geology with a broad understanding of our planet and its fascinating history.

Peter Copeland is Professor of Earth and Atmospheric Sciences at the University of Houston, Texas. His expertise lies in thermochronology, geochemistry, and continental tectonics, with a particular emphasis on the evolution of the continental crust. In recent years, his research has focused on the formation of the Rocky Mountains and the Himalaya. From 2001 to 2004 he was co-editor of the *Geological Society of America Bulletin*.

Janok P. Bhattacharya is the Susan Cunningham Research Chair in Geology at McMaster University (Canada). His research interests are in sedimentary rocks of the western interior of North America. Prior to becoming a professor at the University of Texas at Dallas and subsequently at the University of Houston, Bhattacharya worked in the petroleum industry. He is an American Association of Petroleum Geologists (AAPG) Grover Murray Distinguished Educator (2007), AAPG Distinguished Lecturer (2005–2006), and the 2023 SEPM, Francis J. Pettijohn Medalist for excellence in sedimentology and stratigraphy.

> "A novel, engaging approach to learning about Earth history. Instead of taking an exhaustive time-period approach that characterizes classic historical geology texts, key events are used to explore the planet's geologic evolution. Starting with general principles of geology, including planet formation, geologic time (fossil and radiometric), the unifying theory of plate tectonics, the origin of life and evolution, the text examines major events that shaped and changed our planet over its long history. Thematic events include Proterozoic Snowball Earth, the Cambrian Explosion of Life, the supercontinent Pangea, major extinction events (yes, dinosaurs too), the evolution of western North America and Southeast Asia, human evolution and modern Ice Ages, and more. The text closes with a brief exploration of today's environmental challenges, bringing ancient geologic history into today's conversation. The writing style is modern conversational, which will appeal to the college user, and the supporting illustrations are clear and informative. Instead of the past distinctions between physical geology and historical geology offerings, this text offers a fresh integration of disciplines, allowing instructors to amplify and cater to their and their students' interest. I heartily recommend this text."

Ben van der Pluijm, University of Michigan

"I am very pleased to recommend Dr. Copeland and Dr. Bhattacharya's textbook, *Earth History*, to the educational and academic community. Their book transcends the traditional, often dense, textbook format, presenting geologic science as a collection of exciting short stories in a narrative style that is both engaging and informative. Their writing style is playful yet analytical, data driven and entertaining. Using a coupled systematic and conceptual approach (with a very strong emphasis on conceptual), the authors make complex topics accessible and interesting. What sets this book apart is the fun! This book's unique blend of analytical rigor and rich storytelling is designed to capture student attention, which is no easy feat in the digital age. *Earth History* has significantly influenced the structure and tone of my own courses. I look forward to incorporating this book into my curriculum upon its release. I am confident that it will provide an enriching educational experience for my students."

Professor Jennifer Campo, Lone Star College, University Park

Earth History

Stories of Our Geological Past

Peter Copeland University of Houston

Janok P. Bhattacharya McMaster University, Ontario

Cambridge University Press & Assessment 978-1-108-49852-4 — Earth History Peter Copeland , Janok P. Bhattacharya Frontmatter <u>More Information</u>

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/highereducation/isbn/9781108498524 DOI: 10.1017/9781108682800

© Peter Copeland and Janok P. Bhattacharya 2025

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

When citing this work, please include a reference to the DOI 10.1017/9781108682800

First published 2025

Printed in the United Kingdom by CPI Group Ltd, Croydon CR0 4YY, 2025

Cover image: View of the Colorado River from Desert View Point, Grand Canyon National Park, Arizona, USA. Alan Majchrowicz / Stone / Getty Images.

A catalogue record for this publication is available from the British Library

A Cataloging-in-Publication data record for this book is available from the Library of Congress

ISBN 978-1-108-49852-4 Hardback ISBN 978-1-108-72415-9 Paperback

Additional resources for this publication at www.cambridge.org/earthhistory

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press & Assessment 978-1-108-49852-4 — Earth History Peter Copeland , Janok P. Bhattacharya Frontmatter <u>More Information</u>

CONTENTS

	face		page xi
Ac	know	ledgments	xiv
1	The	Grand Canyon: Reading the Rocks	1
	Lear	ning Objectives	1
	Intro	oduction	1
	1.1	The Grand Canyon: Overview	3
		1.1.1 Age of the Grand Canyon	3
	1.2	The Basement: Metamorphic and	
		Igneous Rocks	6
		1.2.1 Metamorphic Rocks (Granite Gorge	
		Metamorphic Suite)	6
		1.2.2 Igneous Rocks: The Zoroaster	
		Plutonic Complex	8
	1.3	Sedimentary Rocks in the Grand Canyon	
		and Principles of Stratigraphy	12
		1.3.1 Naming Layers	12
		1.3.2 Steno's Laws	12
		1.3.3 Unconformities	15
		1.3.4 Fossils	18
		1.3.5 Environments and Sea Level	20
	1.4	Deformation	25
	1.5	Historical Summary of the Grand Canyon	27
	Key	Words	29
	Furt	her Reading and References	29
	Revi	ew Questions	30
2	The	Philosophies of Geology: Assumptions	
	Stee	er Interpretations	33
	Lear	ning Objectives	33
	Intro	oduction	33
	2.1	The Meaning of Fossils	33
	2.2	Catastrophism	35
	2.3	Neptunism	38
	2.4	Plutonism	39
	2.5	Uniformitarianism	40
	2.6	Uniformitarianism vs. Actualism:	
		Channeled Scablands	42
	2.7	The Scientific Method and Geology's	
		Place in It	44
		2.7.1 Observation, Hypothesis, Test	44
		2.7.2 The Problem of Geologic Experimen	nts 45
	2.8	Summary	46
	Key	Words	47
	Furt	her Reading and References	47
	Revi	ew Questions	47

3	The	Origin of Earth: From the Beginning	
		he Universe to the Early Earth	49
	Lea	rning Objectives	49
		oduction	49
	3.1	The Big Bang	49
	3.2	Stars and the Formation of the Elements	51
	3.3	Forming Our Solar System	53
		Formation of the Earth–Moon System	55
	3.5	Early Earth Evolution	57
		3.5.1 Thermal Evolution	57
		3.5.2 Earth Structure	58
		3.5.3 Core Formation	60
		3.5.4 Crustal Growth	60
		3.5.5 Isostasy and Topography	60
		3.5.6 Early Atmosphere	62
		3.5.7 Evolution of the Oceans	62
	3.6	Summary	64
		Words	64
	-	her Reading and References	64
		iew Questions	64
4	The	Age of Earth: Historical Versus Modern	
	Dat	ing Approaches	67
	Lea	rning Objectives	67
	Intro	oduction	67
	4.1	Historical Approaches to Estimating the	
		Age of Earth	68
		4.1.1 Religion-Based Approaches	68
		4.1.2 Approaches Considering Observation	
		and Modeling of the Natural World	69
		4.1.3 Problems with Historical Methods	70
	4.2	Radioactivity and Geochronology	72
		4.2.1 Discovery of Radioactivity and	
		Kelvin's Dilemma	72
		4.2.2 Basics of Radioactivity	73
	4.3	Requirements of Radioisotope Dating	75
		4.3.1 Knowing the Rate of Radioactive Decay	75
		4.3.2 Knowing How Many Daughters Were	
		Present at the Beginning	75
	4.4	Geochronology of the Oldest Rocks	77
		4.4.1 The First Attempts at Isotopic Dating	77
		4.4.2 The Problems of Geochronology of	
		Older Rocks	78
		4.4.3 The Oldest Terrestrial Evidence	79
		4.4.4 Extraterrestrial Evidence	80
	4.5	Conclusion	81

vi) Contents

	Key Furt	Summary Words her Reading and References
	Rev	iew Questions
5	Geo	e Tectonics: Our Unifying blogical Concept rning Objectives
		oduction: Up and Down or Side to Side?
		Continental Drift: Alfred Wegener and his Big Idea
		5.1.1 Reassembling a Supercontinent: The Fit of the Puzzle
		5.1.2 Early Ideas of Mechanisms for
		Continental Drift
		5.1.3 Paleomagnetism Confirms
		Seafloor Spreading
		5.1.4 Subduction: Where Oceans are
		Destroyed – The Independent Observations of Wadati and Benioff
	52	Plate Tectonics
	5.2	5.2.1 Control of Earth Structure on Plate
		Tectonic Mechanisms
		5.2.2 Plate Boundaries, Plate Motion
		5.2.3 Hot Spots
		5.2.4 Tectonics, Sedimentation, and the
		Rock Cycle
		5.2.5 Super-Volcanoes and Other Plate
		Tectonic Hazards
		5.2.6 When did Plate Tectonics Begin?
		Summary
	-	Words
		her Reading and References
	Rev	iew Questions
6		lution: Natural Selection and the
		anization of Life
		rning Objectives
		oduction: The Observation of Evolution Darwinian Versus Lamarckian Ideas
	0.1	of Evolution
	62	Evidence of our Shared Ancestry
	0.2	6.2.1 Homology and Analogy
		6.2.2 Clades
		6.2.3 Organization of Life and Genetic
		Homology
		6.2.4 Molecular Clocks
		6.2.5 Imperfect Adaptations
		6.2.6 Vestigial Structures
		6.2.7 Vestigial Genes

<mark>85</mark>

	6.3	Models of Evolutionary Change	126
		6.3.1 Natural Selection in Action	126
		6.3.2 Extinction and Speciation	127
		6.3.3 Genes are the Agent of Evolution	129
	6.4	Limiting Factors	129
	6.5	What Darwin Didn't Know	130
	6.6	Summary	130
	Key	Words	131
	Furt	her Reading and References	131
	Revi	ew Questions	131
7	The	Origin of Life: Our Early Atmosphere and	
	the	Rise of Early Life	133
	Lear	ning Objectives	133
	Intro	oduction	134
	7.1	Darwin's Idea: A Warm Little Pond	134
	7.2	When Was the Earth Habitable?	135
	7.3	Evidence for the Oldest Life	135
	7.4	Assembling the First Cell: Theory	
		and Experiments	136
		7.4.1 Heterotrophic Theory for the Origin	
		of Life	137
		7.4.2 Experiments on the Origin of Life	139
		7.4.3 Protocells and the Shallow	
		Water Hypothesis	140
	7.5	Deep Water Hydrothermal Vents Versus	
		Shallow Pond Hypotheses	140
		7.5.1 Hydrothermal Deep Water Life	141
		7.5.2 Hydrothermal Vent Versus Shallow	
		Hydrothermal Field Hypotheses	142
	7.6	From the Top Down: The RNA	
		World	142
	7.7	Origin of Photosynthesis	142
	7.8	From Prokaryotes to Eukaryotes	143
		7.8.1 Evolutionary History of Eukaryotes	143
		7.8.2 Fossil Record of Early Eukaryotes	145
	7.9	Evolution of Earth's Atmosphere and the	
		Great Oxygenation Event	145
	7.10	,	147
	-	Words	147
		her Reading and References	148
	Revi	ew Questions	148
8		wball Earth: A Neoproterozoic	
		zen Planet	151
		ning Objectives	151
		oduction	152
	8.1		152
	8.2	Earth Freezes Over	155
		8.2.1 Evidence for Glaciers at the Equator	157
		8.2.2 Causes of Global Cooling	157

6.2.8 What Use is Half an Eye?

Cambridge University Press & Assessment 978-1-108-49852-4 — Earth History Peter Copeland , Janok P. Bhattacharya Frontmatter More Information

	8.3	Out of the Deep Freeze	161
		8.3.1 Volcanoes Change the Balance	161
		8.3.2 Cap Carbonates	162
	8.4	How Many Glacial Episodes Were There?	164
	8.5	Implications for Life on Earth	164
		, Why Hasn't There Been Another	
		Snowball?	165
	8.7	Summary	165
		Words	166
	-	her Reading and References	166
		iew Questions	166
9	An I	Explosion of Life: Ediacaran Experimentation	n,
		Cambrian Explosion, and Ordovician	
		diversity	169
		ning Objectives	169
	Intro	oduction	170
	9.1	Setting up the Cambrian Explosion: The	
		Sauk Transgression	170
	9.2	When did Metazoans Arise?	170
		9.2.1 Molecular Clocks	170
		9.2.2 Observations From Modern Biology	171
	9.3	Ediacaran Fauna	173
		9.3.1 Soft Bodies and Osmotrophs	173
		9.3.2 Mobile Feeders: Precursors to Animals9.3.3 Animals with Hard Parts and	175
		Ediacaran Extinctions	17/
	0.4		176
	9.4		177
		Burgess Shale	177 178
		9.4.1 The Burgess Shale	
	0.5	9.4.2 Burgess Fauna from Weird to Normal	179
	9.5	The Great Ordovician Biodiversification Event	100
	0.4	Modes of Biodiversification	183 184
	9.6		104
		9.6.1 The Sepkoski Curve: Patterns of Diversification and Mass Extinction	185
		9.6.2 Five Mass Extinctions	
		9.6.2 Five Mass Extinctions 9.6.3 The Ordovician Mass Extinction	186 187
	07	Evolution and the Fossil Record	
			187 188
		Summary	189
	-	Words	189
		her Reading and References iew Questions	109
	Revi	ew Questions	190
10		etus and Pangea: The Lost Ocean and the	193
		embly of a Paleozoic Supercontinent	193
		ning Objectives oduction: The Search for Old Oceans?	193 194
			194 194
	10.1	The Age of the Modern Oceans	174

	10.2	lapetus: An Early Ocean	194
		10.2.1 Geology of "The Rock"	
		(Newfoundland) and the Discovery	
		of lapetus	195
		10.2.2 Ophiolites: Remnants of	
		Oceanic Lithosphere	198
	10.3	The Assembly of Pangea	200
		10.3.1 Suspect Terranes	201
		10.3.2 Orogenic Episodes and	
		Zipper Tectonics	202
	10.4		
		Orogeny	204
	10.5	Conclusion	207
		Summary	207
		Vords	207
	-	er Reading and References	208
		w Questions	208
11	Envir	onmental Change in the Late Paleozoic:	
		Greening of Earth, Climate Change,	
		he Great Dying	211
		ing Objectives	211
		duction	212
		Paleozoic Life: Invasion of the Land	212
		11.1.1 Plants Invade the Land	212
		11.1.2 Evolution of Gigantic Insects and	
		an Oxygen Spike	213
		11.1.3 The Earliest Tetrapods: A Fish Out	
		of Water	215
		11.1.4 The First Amphibians: Filling	
		Romer's Gap	215
		11.1.5 The First Reptiles: Freed From	
		the Water	218
	11.2	Late Paleozoic Climate Change:	
		From Icehouse Forests to Hothouse	
		Deserts	220
	11.3	The Great Dying	223
		11.3.1 The Siberian Traps	224
		11.3.2 A Selective Extinction	224
		11.3.3 Geochemical Changes and Duration	
		of the Extinction Event	226
		11.3.4 Effects of the Volcanism	226
	11.4	Other Hypotheses for Causes of the	
		Mass Extinction?	230
	11.5	A Slow Recovery	230
		Summary	230
		Vords	231
	-	er Reading and References	231
		w Questions	232

Contents

vii

Contents viii

12	The A	ge of Dinosaurs: The Triassic, Jurassic,	
	and Cretaceous World		
	Learn	ing Objectives	235
	Introd	luction	236
	12.1	The Mesozoic	236
	12.2	Early Interpretations of Dinosaurs	239
		12.2.1 Reconstructing Dinosaurs from Bones	239
		12.2.2 Evidence of Bipedalism and an	
		Upright Gait	242
	12.3	The First Dinosaurs	243
	12.4	Dinosaur Adaptations and Behavior	244
	12.5	Were the Dinosaurs Warm-Blooded?	245
	12.6	Dinosaur Classification, Are They Really	
		Just Birds?	248
	12.7	Evolution of Feathers	249
	12.8	Gigantism	250
		12.8.1 Homeothermy, Hollow Bones, and	
		Avian Respiratory Systems	250
		12.8.2 Response to Gigantic Predators	251
		12.8.3 Dinosaurs and Plants	251
	12.9	Dinosaur Diversity	252
	12.10	-	253
		12.10.1 On Being Small	253
		12.10.2 Mammalian Diversity	253
	12.11		255
	12.12	Summary	255
	Key V	-	256
	-	er Reading and References	256
		w Questions	256
13		retaceous Extinction: The End of the	
	-	of Dinosaurs	259
		ing Objectives	259
	Introa	luction	260
	13.1	Scales of Natural and Human-Made	
		Disasters versus Mass Extinctions	260
	13.2	Cretaceous Extinction Hypotheses	260
		13.2.1 Cretaceous Super-Eruptions	260
		13.2.2 Extraterrestrial Impact	262
		The Chicxulub Impact Crater	265
	13.4	Magnitude and Immediate Consequences	
		of the Extraterrestrial Impact	268
		13.4.1 Environmental Collapse	269
		13.4.2 A Slow Recovery	270
		13.4.3 Are the Dinosaurs really Extinct?	271
	13.5	The Origin of the Cretaceous–Paleogene	
		(K–Pg) Extinction	271
	13.6	Conclusion	271
	13.7	Summary	272

	Creta	aceous and Cenozoic Landscape	275
	Learn	ning Objectives	275
	Introd	duction	276
	14.1	Suspect Terranes	276
		14.1.1 Geochemistry Reveals Crustal	
		Structure	279
	14.2	Foreland Basin	279
	14.3	Subduction Angle Controls Tectonics:	
		The Laramide Orogeny	283
	14.4	The Impermanence of Plate Margins	288
		14.4.1 Development of the San Andreas	
		Fault System	289
		14.4.2 The Basin and Range Province	290
	14.5	Hot Spots and Plate Motions	291
	14.6	-	294
		Vords	294
	-	er Reading and References	295
		ew Questions	295
15	The I	ndo-Asian Collision: The Formation of	
	the ⊦	limalaya	297
	Learn	ning Objectives	297
	Introd	duction	298
	15.1	Before the Collision	299
		15.1.1 Tibet in the Cretaceous	300
		15.1.2 The Gangdese Batholith	300
		15.1.3 Ophiolites	302
	15.2	The Collision Begins	302
		15.2.1 Change in Velocity of India	303
		15.2.2 Age of Youngest Marine	
		Sedimentary Rocks	303
		15.2.3 Age of Youngest Subduction-	
		Related Magmatism	304
	15.3	The Collision Continues	305
		15.3.1 Continental Escape	305
		15.3.2 The Collision Continues: The Rise	
		of the Himalaya	306
	15.4	The Interplay of Tectonics, Erosion,	
		and Climate	314
	15.5	Conclusion	316
	15.6	Summary	317
	Key V	Nords	317
	Furth	er Reading and References	317
	Revie	ew Questions	317

Key Words

Review Questions

Further Reading and References

14 Tectonics of Western North America: A Dynamic

16	6 The Messinian Crisis: The Great Drying of the		
	Medite	erranean Sea	319
	Learnir	ng Objectives	319
	Introdu	iction: The Grandest Canyon	320
	16.1	Evidence of Desiccation from the Deep	
		Sea: Ken Hsu and the Glomar Challenger	321
	16.2	Formation of Evaporites from Seawater	324
	16.3	Stratigraphic Evidence of	
		Mediterranean Evaporation	326
	16.4	Evidence of Hypersaline Lakes: The	
		Lago Mare	328
	16.5	Plate Tectonics in 1973 and the Depth of	
		the Mediterranean Sea	328
	16.6	Unconformities and Incised Valleys:	
		Further Evidence for a Massive Drop in	
		Sea Level	329
	16.7	The Salinity Crisis	330
	16.8	Tectonic Cause	333
	16.9	Consequences of the Crisis	334
	16.10	Summary	334
	Key W	ords	335
	Furthe	r Reading and References	335
	Review	Questions	335
17	Out of	Africa: Human Evolution	337
	Learnir	ng Objectives	337
	Introdu	action: Where Did Humans First Evolve?	338
	17.1	The "Missing Link" and the Ladder of	
		Progress: A Eurocentric View	338
	17.2	Piltdown Man: An Example of Twentieth-	
		Century Bias in Established Scientific	
		Views on the Origin of Humans	339
	17.3	The Primate Family Tree	340
	17.4	The First Primates: Life in the Trees	340
	17.5	Our Greatest Evolutionary Step (Meet	
		Lucy)	342
	17.6	Important Environmental Changes	344
	17.7	How Smart was Lucy? Evolution of the Brain	345
	17.8	Early Humans and the First Tools	346
	17.9	Neanderthals vs. Sapiens	347
	17.10	Homo sapiens	348
	17.11	The Naked Ape: Neoteny	
		and Paedomorphosis	348
	17.12	Conclusion	350
	17.13	Summary	351
	Key W	ords	351
	Furthe	r Reading and References	352
	Review	(Questions	352

Contents (ix

	b

18	Ice Ag	ges and Sea Level: Quaternary	
	Enviro	onmental Change	355
		ing Objectives	355
		luction	356
	18.1	From Floods to Ice Ages	356
	18.2		
		Continental Ice Sheets	356
		18.2.1 Where Glaciers are Found Today	356
		18.2.2 Antarctica and Greenland	358
	18.3	Continental Glaciers: The Last Icehouse	358
	18.4	Geologic Record of Ice Sheets and How	
		They Move	358
	18.5	Glacial Termini, Great Lakes, and	
		Great Floods	360
	18.6	Milankovitch Cycles: Orbital Control on	
		Glacial Episodes	361
	18.7	Oxygen Isotope Evidence of Global	
		Climate Cycles and Changes of	
		Sea Level	361
	18.8	Global Consequences of	
		Continental Glaciation	364
	18.9	Sea Level and Sedimentation	365
		18.9.1 Seismic Stratigraphy and Global	
		Sea-Level Cycles	367
		18.9.2 Sea Level Throughout Earth History	371
		18.9.3 Orders of Sea Level and	
		Their Causes	371
	18.10	Time's Arrow, Time's Cycle	373
	18.11	Summary	373
	Key V	Vords	373
	Furthe	er Reading and References	374
	Revie	w Questions	374
19		man World: Our Impact in the Holocene	377
	Learn	ing Objectives	377
	Introc	luction	378
		The Holocene	378
	19.2	Earth's Surface Temperature	379
		19.2.1 Earth's Energy Balance	379
		19.2.2 The Greenhouse Effect	381
		19.2.3 Atmospheric Composition	381
		19.2.4 Greenhouse Gases and Their	
		Effects	381
		Observations of Change	384
	19.4	Modeling Global Change	386
		19.4.1 Climate Versus Weather	386
		19.4.2 Numerical Models of	
		Chaotic Systems	386

Cambridge University Press & Assessment 978-1-108-49852-4 — Earth History Peter Copeland , Janok P. Bhattacharya Frontmatter <u>More Information</u>

Contents

х

19.5 The Sixth Extinction?	389	Further Reading and References	392
19.6 Global Change in a Deep		Review Questions	392
Time Perspective	390		
19.7 Summary	391	Glossary	393
Key Words	392	Index	406

Geology is history, and history is a collection of stories. Rocks are books telling us about these geological stories, which are written in a variety of languages such as stratigraphy, petrology, paleontology, geochemistry, geophysics, and more. Naturally, the more languages you can speak, the more you can appreciate these stories, which is what makes the application of physics, chemistry, biology, and mathematics crucial to the understanding of the history, structure, and composition of Earth and other planets.

At the same time though, many geologists (including the authors of this book) have at least once met a curious non-geologist who has asked them questions such as: "Did the dinosaurs really die because of a meteor?," "Is California going to fall into the sea?," "Is it true that the rocks on the top of Mount Everest were formed in the ocean?," and "Are we going to run out of oil?"

The short answers to the above questions are: "It seems quite likely," "No," "Yes," and "Not really, but only because oil will get so expensive, we will have to find alternatives." In the response to such queries, some geologists make the mistake of going into way more detail than required about these events, perhaps describing the science behind them, and even resorting to the use of unnecessary jargon, therefore losing their interlocutor's interest.

This is why, in writing principally for undergraduate students taking courses on Historical Geology, Introductory Earth Science, or Earth through Time with no pre-requisites, we chose to simply tell stories. We introduce the details only in service of the story. In doing so, we hope to illustrate to the student the integrative nature of geoscience.

Our stories include highlights from all the major geologic eras from the Precambrian to the Holocene and include discussions of essential aspects of North America (the Appalachians and Rockies) and around the globe (Mediterranean salinity crisis and the Himalaya). Some stories are mostly tectonic whereas others emphasize the history of life, as recorded in the fossil record.

The stories are rarely simple, but they are usually fascinating. However, stories can change. Many of the ideas presented in this textbook as modern consensus were either derided by many experts or non-existent just a few decades ago. Yet, new data can come along (usually because of the invention of some new technology) that challenges old ideas. Therefore, we spend time in most of our stories to not just lay out the geologic evidence but describe the people involved with the big ideas in geoscience and how they struggled with the data and with each other. Such struggles are not over; very few places on Earth are left unexplored but new eyes bring new perspectives and we hope our discussions of how old ideas were replaced by new ones will inspire the next generation to look for yet newer and broader explanations of how our world came to be and where it might be going.

The telling of the history of Earth begins with these sorts of small-scale studies, often carried out by a small number of people over just a few years. This work is then often integrated into a larger picture to tell a broader story such as the evolution of a mountain belt over hundreds of millions of years, to the evolution of life across the planet over billions of years.

The stories we tell in the following chapters are of the broader sort and are therefore compilations of the work of many people (from dozens to thousands) over many years (decades to centuries). We hope to illustrate how broad insights into the history of our solar system, our planet, its diversity of life, and our own species, have come from being able to read many geologic languages.

Conceptual Approach

Rather than offering a linear overview of each time period in detail, we take key events in Earth history to demonstrate how geologists piece together different types of geological evidence to build up a clear picture of events in Earth history.

For example, in Chapter 13, when discussing the extinction of the dinosaurs, we begin with descriptions of some sedimentary rocks in Italy and the nuances of their chemical composition, but soon move on to geophysical discoveries in Mexico and giant tsunami deposits in Texas and North Dakota. We also mention that a large part of India is covered by kilometer-thick lava deposits that erupted right at the time the dinosaurs went extinct and may have played a role in their demise. Finally, we conclude with a consideration of the likelihood of another mass extinction caused by an asteroid impact. Or in Chapter 14, when addressing the question about the fate of California, we also discuss the details of Earth's interior and the processes that operate thousands of kilometers below the surface.

Every interesting thing you've ever heard about the history of our planet started with a geologist picking up a rock. Geologists are trained to notice different aspects of rocks that give clues to their genesis and subsequent history. Some of this information can be picked up in the field, whereas some can only be obtained by analyzing the rock in the lab. Regardless, the goal is to fully interpret this rock.

Understanding the formation of the rock (e.g., from a volcano, in a lake) is the starting point, but much of what we may want to know about a rock extends far beyond this initial step. If we are interested in finding oil, for example, we need to know

) Preface

xii

how old the rock is, what kind of rocks were deposited above and below it, and how deeply it was buried by younger rocks. If, on the other hand, we want to uncover the processes associated with the formation of a particular mountain belt, we need to observe the faults and folds in rocks: when did they form, what is their orientation, and how much motion has occurred on these structures?

We might start a story by asking, "Did you know that some geologists think there was a time when the Earth was completely covered by ice?" From there, we can introduce aspects of glaciology, geochemistry, geophysics, and stratigraphy. This is the approach we've tried to take with chapters concerning the biologic and tectonic evolution of Earth.

Our goal, whether the topic is paleontologic or tectonic, is to try and present individual chapters as self-contained narratives. They really aren't totally self-contained (the order isn't random) but if a reader or instructor wanted to skip some chapters, we hope that most of what is needed to understand each chapter would be right there. Although we expect most people will encounter this book as part of a course often called Historical Geology, which usually assumes an initial course in Physical Geology, we have deliberately included enough foundational material in Chapter 1, so that a reader without any background can follow the stories and appreciate Earth history.

Key Features of this Book

- Accessible and concise, primarily aimed at non-majors, including broad introductory chapters for those with no prior knowledge of geology.
- Provides a far more conceptual approach to the topic, focusing on key events in Earth history, such as the extinction of dinosaurs and the formation of the Grand Canyon, to explain key geological concepts and how geologists use multiple strands of evidence to build up an understanding of the geological past.
- Uses an engaging, narrative style of writing to make the text more interesting to students.
- Limits the discussion of paleontology to the context of key events in Earth and life history, rather than as a detailed topic in its own right.
- Avoids large species lists, which can be overwhelming to students.

Pedagogical Features

Individuals learn in different ways. We therefore provide a variety of pedagogical aids to be used as the student chooses. Each chapter includes the following:

- Learning Objectives: to help students in clarifying, arranging, and prioritizing their learning.
- Introductions: to highlight the topic covered in each chapter and how it fits within the big picture, all whilst piquing the reader's interest.

- Color figures and photographs: to complement the text and provide a visual representation of the concepts discussed.
- KEY POINT boxes: to easily spot the main concepts covered in each section.
- Boxes: to highlight interesting and relevant side stories or information.
- Chapter Summary: to summarize the major points of the chapter and allow the reader to reflect on what they have learnt.
- Key Words: boldface within the text and listed at the end of each chapter for easy review. A full Glossary of key words appears at the end of the book.
- Further Reading and References: to help extend the coverage of topics that are not dealt with in so much detail within the chapter, or for students that need more information than can be presented in the chapter.
- Review Questions: to encourage students to think about what they have covered, and for guiding instructors' quiz or test questions.

Text Organization

The first six chapters provide much of the foundation for the remainder of the book, highlighting specific stories that we believe are both essentially interesting but also provide a systematic and sequential overview of most of the major events in Earth history calling on the variety of disciplines required to explain what we know about the subject. These chapters are organized in chronological order and cover most of the major tectonic and biologic events in Earth history that are traditionally covered in an Earth History course, but we emphasize the narrative versus a compendium of fact, events, and dates.

The remainder of the chapters discuss individual episodes in Earth history (restricted in both space and time). These in no way represent an exhaustive treatment but are chosen because of the way they illustrate the need to speak the several languages of geoscience in order to read the history of our planet.

- Chapter 1 reviews the basic principles of geology and covers material usually taught in a Physical Geology course, followed by a review of the history of geology and the philosophies of geologic thought that have shaped geologic investigation over several centuries. Here, we take a fieldtrip (narrative-type) approach by using the Grand Canyon to illustrate many of the basic principles of physical geology. What can the reader learn about geology on a trip to the Grand Canyon, versus a systematic listing of the various types of rocks and minerals?
- **Chapter 2** covers the way that geological thinking developed and introduces the concepts of Neptunism, Plutonism, uniformitarianism, and actualism, using the Channeled Scablands as an example. The idea is for students to get a feel for how geologists think.
- **Chapter 3** tells the story of the origin of the universe, the formation of our solar system and the Earth–Moon system and Earth's early atmosphere and hydrosphere.

Cambridge University Press & Assessment 978-1-108-49852-4 — Earth History Peter Copeland , Janok P. Bhattacharya Frontmatter <u>More Information</u>

- **Chapter 4** uncovers how deep time was discovered and how we know that Earth is 4.56 billion years old.
- **Chapter 5** provides an overview of plate tectonics and how this theory was developed.
- **Chapter 6** concludes the first part of the book with a discussion of the process of natural selection that explains the observation that life has evolved through the immensity of deep time.
- **Chapter 7** discusses the biogeochemistry and stratigraphy that informs our understanding of the origin of life on Earth.
- **Chapter 8** reviews the paleomagnetism, geochemistry, glaciology, and stratigraphy that led to the snowball Earth hypothesis.
- **Chapter 9** describes the paleontological oddities of the Ediacaran fauna and the Cambrian explosion and what these fossils tell us about the mechanisms of evolution and the diversification of life.
- Chapter 10 details the closing of Iapetus and the formation of Pangea from the perspective of the Appalachian Mountains.
- Chapter 11 describes the changes in life on Earth during the Paleozoic and the paleontology, geochemistry, and

© in this web service Cambridge University Press & Assessment

volcanology that informs our understanding of the Great Dying at the end of the Permian.

Chapter 12 chronicles the rise of dinosaurs and their variety.

- **Chapter 13** details the geochemistry, geophysics, and stratigraphy that led to the giant impact hypothesis for the end-Cretaceous extinction.
- **Chapter 14** tells the tectonic history of western North America from Jurassic to present with reference to stratigraphy, magmatism, deformation, and geophysics.
- Chapter 15 tells the story of the Himalaya using structure, geophysics, stratigraphy, and geochemistry.
- **Chapter 16** uses geochemistry, stratigraphy, and geophysics to tell the story of the drying of the Mediterranean during the Messinian salinity crisis.
- **Chapter 17** chronicles human evolution with paleontology and stratigraphy as well as a discussion of the cultural complications of these studies.
- Chapter 18 describes the Pleistocene ice ages with glaciology, stratigraphy, and geochemistry.
- **Chapter 19** concludes the book by looking forward as well as to the past with a discussion of the effects of humans on the climate using stratigraphy, modeling, and geochemistry.

(xiii

Preface

ACKNOWLEDGMENTS

We would first like to thank our editors at CUP, Ilaria Tassistro, Emma Kiddle, Matt Lloyd, and Rachel Norridge for their support of this book and all of their hard work in making it a reality. We thank reviewers Altaf Arain, Greg Benson, Ashok Bhattacharya, Steve Brusatte, Michael Happy, Rob Hatcher, Paul Higgs, Paul Hoffman, Mark Laflamme, Jonny Wu, and Jinny Sisson, as well as the anonymous reviewers solicited by CUP. David Hemsley at Aardwolf Books did a thorough job of copy editing and thanks too to our proofreader Julie Jackson. Discussions with Robert Stern helped with Chapter 5. Aidan Delorme helped compile research for Chapter 12. We appreciate the support in use of images and photos from collections at the Royal Ontario Museum, the Natural History Museum (London, UK), the Field Museum (Chicago), the Neanderthal Museum (Mettmann, Germany), the Houston Museum of Natural History, the Perot Museum (Dallas), Texas Christian University (Ft. Worth), and McMaster University. We also thank Laura Crossey, Bruce Damer, David Deamer, Karl Karlstrom, Bruce Watson, Alex Robinson, Michael Murphy, Steven Newton, and Chris Paola, all of whom provided images as credited throughout the book. We also thank Ron Blakey at Colorado Plateau Geosystems, Inc. for use of Deeptime MapsTM, which we use throughout the text. Pat DeLuca, at McMaster, is thanked for helping find usable satellite images. We thank David Bonner, who compiled the Glossary. Finally, we thank

our wives, Beth and Cyndy, for their patience as we worked on the book for the past eight years. Cyndy Bhattacharya joined a number of field excursions to the Grand Canyon, Rocky Mountains as well as driving to the Santerno Valley, Gubbio, and Sardinia, Italy to take photos featured in Chapters 1, 13, and 16 respectively.

Names and dates of units in the timescale figures for Chapters 7 to 19 are based on the Geologic Time Scale v. 6.0: Geological Society of America (Walker, J.D., and Geissman, J. W., compilers, 2022, Geologic Time Scale v. 6.0: Geological Society of America, https://doi.org/10.1130/2022.CTS006C), which is itself based on data from Cohen, K.M., Finney, S., and Gibbard, P.L., 2012, International Chronostratigraphic Chart: International Commission on Stratigraphy, https:// stratigraphy.org/ICSchart/ChronostratChart2012.pdf (accessed Sept. 2022), Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J.-X., 2013 (updated), The ICS International Chronostratigraphic Chart: Episodes, v. 36, p. 199-204, http://www.stratigraphy .org/ICSchart/ChronostratChart2021-10.pdf (accessed Sept. 2022) and Gradstein, F.M, Ogg, J.G., Schmitz, M.D., et al., 2012, The Geologic Time Scale 2012: Boston, USA, Elsevier, https://doi.org/ 10.1016/B978-0-444-59425-9.00004-4. Colors follow the standard colors advised by the International Commission on Stratigraphy (administered by the International Geological Map of the World project in Paris - CCGM).

Cambridge University Press & Assessment 978-1-108-49852-4 — Earth History Peter Copeland , Janok P. Bhattacharya Frontmatter <u>More Information</u>

> Aerial view of Colorado River, Grand Canyon, Arizona. Source: Barry Winiker / Getty Images.

1420